论文标题

Galton-Watson树上的组合游戏,涉及多个生成动作

Combinatorial games on Galton-Watson trees involving several-generation-jump moves

论文作者

Podder, Moumanti, Bhasin, Dhruv

论文摘要

我们研究了$ k $ - 跳跃的正常和$ k $ - $ - $ -SH的MISère游戏,上面扎根的Galton-Watson树上,表达了这些游戏的各种结果的概率,这是依赖$ K $和后代分布的某些功能的特定固定点。我们讨论了有关在后代分布是泊松$(λ)$(即,对于$λ$的值,绘制概率严格为正的值)时,讨论了与提取概率有关的相关结果。我们将$ 2 $ - 跳跃的普通游戏的各种结果的概率与$ 2 $ - 跳跃的Misère游戏的概率进行了比较,在Poisson Imime下,在$ 2 $ - 跳跃的普通游戏和$ 1 $ - 跳跃的普通游戏之间也有类似的比较。我们将第一位玩家损失$ 2 $ - 跳跃普通游戏的衰减率描述为$λ\ rightarrow \ infty $。最后,我们讨论了$ k $跳跃的普通游戏的平均持续时间有限的足够持续时间。

We study the $k$-jump normal and $k$-jump misère games on rooted Galton-Watson trees, expressing the probabilities of various outcomes of these games as specific fixed points of certain functions that depend on $k$ and the offspring distribution. We discuss results on phase transitions pertaining to draw probabilities when the offspring distribution is Poisson$(λ)$ (i.e. for which values of $λ$, the draw probability is strictly positive). We compare the probabilities of the various outcomes of the $2$-jump normal game with those of the $2$-jump misère game, and a similar comparison is drawn between the $2$-jump normal game and the $1$-jump normal game, under the Poisson regime. We describe the rate of decay of the probability that the first player loses the $2$-jump normal game as $λ\rightarrow \infty$. Finally, we discuss a sufficient condition for the average duration of the $k$-jump normal game to be finite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源