论文标题

在平衡的开放自由冠链中的对数负面态度:一个准确的解决方案

Logarithmic negativity in out-of-equilibrium open free-fermion chains: An exactly solvable case

论文作者

Alba, Vincenzo, Carollo, Federico

论文摘要

我们在紧密结合链中的费米子对数消极情绪中得出了Quasiparticle图片,受到增益和损失的影响。我们专注于fermionicnéel状态的量子淬灭之后的动力学。我们考虑嵌入无限链中的相邻间隔和不相交的间隔之间的负效率。我们的结果符合大型子系统的标准流体动力学极限,并具有固定的比例。此外,我们考虑了弱点的极限,其中耗散率与间隔的大小成反比。我们表明,消极性与两个间隔之间共享的纠缠对的准粒子对成正比,就像互信息一样。至关重要的是,与统一的情况相反,rényi熵的带有rényi指数为1/2的元素的负含量并未给出,并且通常与热力学数量不容易相关。

We derive the quasiparticle picture for the fermionic logarithmic negativity in a tight-binding chain subject to gain and loss dissipation. We focus on the dynamics after the quantum quench from the fermionic Néel state. We consider the negativity between both adjacent and disjoint intervals embedded in an infinite chain. Our result holds in the standard hydrodynamic limit of large subsystems and long times, with their ratio fixed. Additionally, we consider the weakly-dissipative limit, in which the dissipation rates are inversely proportional to the size of the intervals. We show that the negativity is proportional to the number of entangled pairs of quasiparticles that are shared between the two intervals, as is the case for the mutual information. Crucially, in contrast with the unitary case, the negativity content of quasiparticles is not given by the Rényi entropy with Rényi index 1/2, and it is in general not easily related to thermodynamic quantities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源