论文标题

半监督的级联聚类用于分类嘈杂的标签数据

Semi-Supervised Cascaded Clustering for Classification of Noisy Label Data

论文作者

Gupta, Ashit, Deodhar, Anirudh, Mukherjee, Tathagata, Runkana, Venkataramana

论文摘要

当数据具有嘈杂的标签时,监督分类技术的性能通常会恶化。即使是半监督分类方法,也仅集中在处理缺失标签的问题上。解决嘈杂标签数据的大多数方法都取决于需要大量数据集进行分类任务的深神经网络(DNN)。这构成了一个严重的挑战,尤其是在流程和制造行业中,数据有限,标签很嘈杂。我们提出了一种半监督的级联聚类(SSCC)算法,以提取模式并在此类数据集中生成级联的类树。引入了一个具有可配置超参数的新型群集评估矩阵(CEM),以定位和消除嘈杂的标签,并在级联的聚类上调用修剪标准。该算法降低了对昂贵的人类专业知识的依赖,以评估标签的准确性。即使在嘈杂的标签数据集上训练时,也发现基于SSCC生成的分类器也是准确且一致的。在多个嘈杂标签数据集(包括工业数据集)上测试时,与支持向量机(SVM)相比,它的性能更好。拟议的方法可有效地用于在人类专业知识最少的工业环境中得出可行的见解。

The performance of supervised classification techniques often deteriorates when the data has noisy labels. Even the semi-supervised classification approaches have largely focused only on the problem of handling missing labels. Most of the approaches addressing the noisy label data rely on deep neural networks (DNN) that require huge datasets for classification tasks. This poses a serious challenge especially in process and manufacturing industries, where the data is limited and labels are noisy. We propose a semi-supervised cascaded clustering (SSCC) algorithm to extract patterns and generate a cascaded tree of classes in such datasets. A novel cluster evaluation matrix (CEM) with configurable hyperparameters is introduced to localize and eliminate the noisy labels and invoke a pruning criterion on cascaded clustering. The algorithm reduces the dependency on expensive human expertise for assessing the accuracy of labels. A classifier generated based on SSCC is found to be accurate and consistent even when trained on noisy label datasets. It performed better in comparison with the support vector machines (SVM) when tested on multiple noisy-label datasets, including an industrial dataset. The proposed approach can be effectively used for deriving actionable insights in industrial settings with minimal human expertise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源