论文标题

$α$ -Fermi-pasta-ulam-tsingou模型中的弹道运输和共振分析

Analysis of ballistic transport and resonance in the $α$-Fermi-Pasta-Ulam-Tsingou model

论文作者

Bohm, Nathaniel, Schelling, Patrick K.

论文摘要

使用计算热响应函数的方法,在一维$α$ -FERMI-PASTA-TSINGOU(FPUT)模型中阐明了弹道传输和共振现象。证实了先前研究中所见的空间正弦温度特征中周期性振荡的存在。但是,使用响应功能获得的结果可以更完整地理解。特别是表明共振涉及在一维链中倾向于加强的正常模式之间的节奏。非谐波散射是为了破坏整个统计合奏中的相位连贯性,并且随着非谐度的增加,运输被驱动到扩散状态。这些结果为低维系统中的异常热传输提供了更多的见解。还使用时间相关函数探索了正常模式散射。有趣的是,这些计算除了证明了整个模拟整体中相干性的丧失外,似乎还显示了在强烈的非谐度条件下所谓的Q-呼吸器的证据。最后,我们描述了如何开发此处概述的方法以包括量子统计数据,还可以在低温下阐明逼真的材料中的第二种声音和弹道传输的第一声音估计。

Ballistic transport and resonance phenomena are elucidated in the one-dimensional $α$-Fermi-Pasta-Ulam-Tsingou (FPUT) model using an approach of computing thermal response functions. The existence of periodic oscillations in spatially sinusoidal temperature profiles seen in previous studies is confirmed. However, the results obtained using response functions enable a more complete understanding. In particular, it is shown that resonance involves beats between normal modes which tend to reinforce in a one-dimensional chain. Anharmonic scattering acts to destroy phase coherence across the statistical ensemble, and with increasing anharmonicity, transport is driven towards the diffusive regime. These results provide additional insight into anomalous heat transport in low-dimensional systems. Normal-mode scattering is also explored using time correlation functions. Interestingly, these calculations, in addition to demonstrating loss of phase coherence across an ensemble of simulations, appear to show evidence of so-called q-breathers in conditions of strong anharmonicity. Finally, we describe how the approach outlined here could be developed to include quantum statistics and also also first-principles estimates of phonon scattering rates to elucidate second sound and ballistic transport in realistic materials at low temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源