论文标题
在燃烧理论中产生的多维反应扩散系统中稳态的稳定性
Stability of the steady states in multidimensional reaction diffusion systems arising in combustion theory
论文作者
论文摘要
我们证明,一类多维反应扩散系统的稳定状态在未加权空间和指数加权的Sobolev空间的交汇处渐近稳定,并特别注意特殊情况,即在燃烧理论中出现的方程式。此处考虑的稳态解决方案是与系统相关的行进前线的终点,因此目前的结果补充了最新的论文{gls1,gls2,gls3,gls3,glsr,gly},研究了行进前线的稳定性。
We prove that the steady state of a class of multidimensional reaction-diffusion systems is asymptotically stable at the intersection of unweighted space and exponentially weighted Sobolev spaces, and pay particular attention to a special case, namely, systems of equations that arise in combustion theory. The steady-state solutions considered here are the end states of the traveling fronts associated with the systems, and thus the present results complement recent papers \cite{GLS1, GLS2, GLS3, GLSR, GLY} that study the stability of traveling fronts.