论文标题

从自由衰减的湍流中产生引力波

Generation of gravitational waves from freely decaying turbulence

论文作者

Auclair, Pierre, Caprini, Chiara, Cutting, Daniel, Hindmarsh, Mark, Rummukainen, Kari, Steer, Danièle A., Weir, David J.

论文摘要

我们研究了早期宇宙中自由腐烂的涡旋湍流产生的随机引力背景(SGWB)。我们彻底研究了速度场的时间相关性,因此产生引力波的各向异性应力。通过流体动力学模拟,我们表明速度场的傅立叶成分的不等时间相关函数(UETC)在时间差上是高斯,正如“扫描”去相关模型所预测的那样。我们引入了一个去相关模型,该模型可以扩展到流量的整体规模周围的波长。补充了动能的演化定律和整体尺度的进化定律,这提供了与模拟一致的湍流速度场的新模型。我们将UETC作为积极的确定内核进行讨论,并建议将gibbs内核作为速度UETC作为确保SGWB积极确定性的自然方法。 SGWB是通过与重力波绿色功能的产生各向异性应力UETC的4维整合给出的。我们使用基于重要性抽样的蒙特卡洛算法执行此集成,并发现结果与模拟的结果匹配。此外,从数值集成和模拟中获得的SGWB与一个模型非常一致,该模型在该模型中是恒定的,并且在几个涡流周转时间后突然关闭。基于此假设,我们为SGWB频谱提供了近似的分析形式及其与初始动能和积分尺度的缩放。最后,我们使用模型和数值集成算法来表明,包括湍流的初始生长阶段在很大程度上影响SGWB的光谱形状。这突出了对湍流产生机制的完全理解的重要性。

We study the stochastic gravitational wave background (SGWB) produced by freely decaying vortical turbulence in the early Universe. We thoroughly investigate the time correlation of the velocity field, and hence of the anisotropic stresses producing the gravitational waves. With hydrodynamical simulations, we show that the unequal time correlation function (UETC) of the Fourier components of the velocity field is Gaussian in the time difference, as predicted by the "sweeping" decorrelation model. We introduce a decorrelation model that can be extended to wavelengths around the integral scale of the flow. Supplemented with the evolution laws of the kinetic energy and of the integral scale, this provides a new model UETC of the turbulent velocity field consistent with the simulations. We discuss the UETC as a positive definite kernel, and propose to use the Gibbs kernel for the velocity UETC as a natural way to ensure positive definiteness of the SGWB. The SGWB is given by a 4-dimensional integration of the resulting anisotropic stress UETC with the gravitational wave Green's function. We perform this integration using a Monte Carlo algorithm based on importance sampling, and find that the result matches that of the simulations. Furthermore, the SGWB obtained from the numerical integration and from the simulations show close agreement with a model in which the source is constant in time and abruptly turns off after a few eddy turnover times. Based on this assumption, we provide an approximate analytical form for the SGWB spectrum and its scaling with the initial kinetic energy and integral scale. Finally, we use our model and numerical integration algorithm to show that including an initial growth phase for the turbulent flow heavily influences the spectral shape of the SGWB. This highlights the importance of a complete understanding of the turbulence generation mechanism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源