论文标题
揭示了Laves阶段中同步 - 震中脱位的运动机制
Unveiling the mechanisms of motion of synchro-Shockley dislocations in Laves phases
论文作者
论文摘要
在Laves阶段,同步是主要的基础滑动机制。它是通过同步 - 震中脱位的滑动来完成的。然而,这种区域位错的运动机制仍然尚不清楚。在这项工作中,使用原子模拟,确定了两个30 \ textDegree {}同步 - 摇滚与不同的汉堡向量和核心结构和能量的脱位。我们证明了扭结对的成核和传播是同步摇滚脱位(部分I)运动的能量有利的机制。空位跳和间隙改组被确定为与扭结传播有关的两个关键机制,我们研究了空位和反式缺陷如何有助于纠结成核和传播,这对于扭结迁移率至关重要。此外,我们确定了一种非序列原子洗牌的机制,以实现同步摇滚脱位的运动(部分II)。这些发现提供了对薰衣草相和许多相关拓扑密封相关的塑性变形的温度和化学成分的依赖性的见解。
In Laves phases, synchroshear is the dominant basal slip mechanism. It is accomplished by the glide of synchro-Shockley dislocations. However, the atomic-scale mechanisms of motion of such zonal dislocations are still not well understood. In this work, using atomistic simulations, two 30\textdegree{} synchro-Shockley dislocations with different Burgers vectors and core structures and energies are identified. We demonstrate that nucleation and propagation of kink pairs is the energetically favorable mechanism for the motion of the synchro-Shockley dislocation (partial I). Vacancy hopping and interstitial shuffling are identified as two key mechanisms related to kink propagation and we investigated how vacancies and antisite defects assist kink nucleation and propagation, which is crucial for kink mobility. Additionally, we identified a mechanism of non-sequential atomic shuffling for the motion of the synchro-Shockley dislocation (partial II). These findings provide insights into the dependency on temperature and chemical composition of plastic deformation induced by zonal dislocations in Laves phases and the many related topologically close-packed phases.