论文标题

编织:基于机器学习的,用于预测评估和地震风险政策设计的游戏理论框架

KnitCity: a machine learning-based, game-theoretical framework for prediction assessment and seismic risk policy design

论文作者

Douin, Adèle, Bruneton, J. P., Lechenault, Frédéric

论文摘要

针织织物变形时会表现出类似雪崩的事件:通过与eathquakes的类比,我们有兴趣预测这些“针织式”。然而,与大多数类似的地震模型一样,由于这些事件的时间间歇性和规模不变,相应时间序列的特殊统计量严重危害了这项工作。但更重要的是,这种预测很难{\ it评估}:取决于选择预测的选择,结果可能非常不同,并且不容易比较。此外,在我们的情况下,预测模型可以接受各种通用指标的培训,这些指标忽略了当前问题的一些重要特异性。最后,这些模型通常没有提供有关在实践中使用这些预测的最佳方法的明确策略。在这里,我们介绍了一个框架,该框架允许设计,评估和比较预测因素,还可以比较决策政策:一种模型具有地震活跃的{\ it City},受到针织织物机械响应的crack绕动力学的影响。因此,我们开始研究针织的人口,引入了一项政策,该政策可以通过该政策决定将人们保留在该政策中,如果发生大型事件会导致人类损失或撤离城市,这是每日费用的费用。该政策仅依赖于过去的地震观察。我们使用强化学习环境和基于人工神经网络的各种时间序列预测指标构建有效的政策。通过在预测因素上诱导有身体动机的指标,该机制可以进行定量评估和比较其在决策过程中的相关性。

Knitted fabric exhibits avalanche-like events when deformed: by analogy with eathquakes, we are interested in predicting these "knitquakes". However, as in most analogous seismic models, the peculiar statistics of the corresponding time-series severely jeopardize this endeavour, due to the time intermittence and scale-invariance of these events. But more importantly, such predictions are hard to {\it assess}: depending on the choice of what to predict, the results can be very different and not easily compared. Furthermore, forecasting models may be trained with various generic metrics which ignore some important specificities of the problem at hand, in our case seismic risk. Finally, these models often do not provide a clear strategy regarding the best way to use these predictions in practice. Here we introduce a framework that allows to design, evaluate and compare not only predictors but also decision-making policies: a model seismically active {\it city} subjected to the crackling dynamics observed in the mechanical response of knitted fabric. We thus proceed to study the population of KnitCity, introducing a policy through which the mayor of the town can decide to either keep people in, which in case of large events cause human loss, or evacuate the city, which costs a daily fee. The policy only relies on past seismic observations. We construct efficient policies using a reinforcement learning environment and various time-series predictors based on artificial neural networks. By inducing a physically motivated metric on the predictors, this mechanism allows quantitative assessment and comparison of their relevance in the decision-making process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源