论文标题

概率违反第二种热力学定律的有限时间界限

Finite-time bounds on the probabilistic violation of the second law of thermodynamics

论文作者

Miller, Harry J. D., Perarnau-Llobet, Martí

论文摘要

Jarzynski的平等性通过提取自由能差的工作来违反热力学的第二定律的概率构成了强大的约束。我们为与热马尔可夫环境接触的驱动系统带来了有限的时间改进,该系统可以用热力学长度的几何概念表示。我们表明,有限时间协议以速度慢于$ 1/\sqrtτ$的速度收敛到Jarzynski的限制,其中$τ$是工作 - 拔除协议的总时间。我们的结果突出了最小耗散过程的新应用,并证明了热力学几何形状与工作的高阶统计特性之间的联系。

Jarzynski's equality sets a strong bound on the probability of violating the second law of thermodynamics by extracting work beyond the free energy difference. We derive finite-time refinements to this bound for driven systems in contact with a thermal Markovian environment, which can be expressed in terms of the geometric notion of thermodynamic length. We show that finite-time protocols converge to Jarzynski's bound at a rate slower than $1/\sqrtτ$, where $τ$ is the total time of the work-extraction protocol. Our result highlights a new application of minimal dissipation processes and demonstrates a connection between thermodynamic geometry and the higher order statistical properties of work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源