论文标题
表征多域虚假新闻和对中国微博的潜在用户影响
Characterizing Multi-Domain False News and Underlying User Effects on Chinese Weibo
论文作者
论文摘要
在过去几年中,在社交媒体上传播的虚假消息激增,并导致了现实世界中的多种威胁。尽管有关于特定领域的虚假新闻(例如政治或医疗保健)的研究,但比较跨领域的虚假新闻的工作很少。在本文中,我们调查了2009年至2019年中国最大的Twitter式社交媒体平台的九个领域的虚假新闻。新收集的数据包含44,728个帖子,由40,215个用户发布,并重新发布了超过340万次。根据多域数据集的分布和传播,我们观察到,与其他领域相比,与政治等其他领域的帖子相比,诸如健康和医学之类的日常生活中的虚假新闻比政治中的帖子更有效,而政治虚假新闻具有最有效的能力来扩散。关于微博上广泛散布的虚假新闻帖子与某些类型的用户(按性别,年龄等。此外,这些帖子都引起了重新播放的强烈情绪,并随着False-News启动器的积极参与而进一步扩散。我们的发现有可能在可疑新闻发现,真实性预测以及显示和解释中帮助设计错误的新闻检测系统。微博上的发现与现有作品的发现表明了细微的模式,这表明需要对来自不同平台,国家或语言的数据进行更多研究,以解决全球错误新闻的问题。代码和新的匿名数据集可在https://github.com/ictmcg/characterizing-weibo-multi-domain-false-news上找到。
False news that spreads on social media has proliferated over the past years and has led to multi-aspect threats in the real world. While there are studies of false news on specific domains (like politics or health care), little work is found comparing false news across domains. In this article, we investigate false news across nine domains on Weibo, the largest Twitter-like social media platform in China, from 2009 to 2019. The newly collected data comprise 44,728 posts in the nine domains, published by 40,215 users, and reposted over 3.4 million times. Based on the distributions and spreads of the multi-domain dataset, we observe that false news in domains that are close to daily life like health and medicine generated more posts but diffused less effectively than those in other domains like politics, and that political false news had the most effective capacity for diffusion. The widely diffused false news posts on Weibo were associated strongly with certain types of users -- by gender, age, etc. Further, these posts provoked strong emotions in the reposts and diffused further with the active engagement of false-news starters. Our findings have the potential to help design false news detection systems in suspicious news discovery, veracity prediction, and display and explanation. The comparison of the findings on Weibo with those of existing work demonstrates nuanced patterns, suggesting the need for more research on data from diverse platforms, countries, or languages to tackle the global issue of false news. The code and new anonymized dataset are available at https://github.com/ICTMCG/Characterizing-Weibo-Multi-Domain-False-News.