论文标题

Lipschitz操作员的注入性

Injectivity of Lipschitz operators

论文作者

García-Lirola, Luis, Petitjean, Colin, Prochazka, Antonin

论文摘要

Any Lipschitz map $f\colon M \to N$ between metric spaces can be "linearised" in such a way that it becomes a bounded linear operator $\widehat{f}\colon \mathcal F(M) \to \mathcal F(N)$ between the Lipschitz-free spaces over $M$ and $N$.本说明的目的是探索$ f $的注射率与$ \ wideHat {f} $的注入性之间的连接。虽然很明显,如果$ \ widehat {f} $是注入的,那么$ f $也是如此,相反的情况就不太清楚。的确,我们确定了某些含义不存在的情况,但我们还证明,对于某些类别的度量空间$ m $,任何注射器Lipschitz Map $ f \ colon m \ colon m \ to n $(对于任何$ n $)都可以承认注射性线性化。在我们的途中,我们研究Lipschitz地图如何在自由空间中携带元素的支持,并且还为$ f $提供了更强的条件,这些条件确保了$ \ widehat {f} $是注入的。

Any Lipschitz map $f\colon M \to N$ between metric spaces can be "linearised" in such a way that it becomes a bounded linear operator $\widehat{f}\colon \mathcal F(M) \to \mathcal F(N)$ between the Lipschitz-free spaces over $M$ and $N$. The purpose of this note is to explore the connections between the injectivity of $f$ and the injectivity of $\widehat{f}$. While it is obvious that if $\widehat{f}$ is injective then so is $f$, the converse is less clear. Indeed, we pin down some cases where this implication does not hold but we also prove that, for some classes of metric spaces $M$, any injective Lipschitz map $f\colon M \to N$ (for any $N$) admits an injective linearisation. Along our way, we study how Lipschitz maps carry the support of elements in free spaces and also we provide stronger conditions on $f$ which ensure that $\widehat{f}$ is injective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源