论文标题

没有先验范围的地图

Maps with no a priori bounds

论文作者

Blokh, Alexander, Levin, Genadi, Oversteegen, Lex, Timorin, Vladlen

论文摘要

多项式(PL)映射的模量是一个重要的不变式,可控制拉直地图的失真,因此,相应的PL Julia集的几何形状。模量上的下限,称为复合物是先验界限,在各种环境中是已知的。对于任何有理函数,我们通过卫星案例中PL地图的模量的上限对此进行补充,该模量仅取决于相对周期和PL映射的程度。这排除了没有边界相对周期的卫星案例中的先验界限。我们还应用工具来获得无限额定缩放的情况下的地球学双曲线长度的下限,并证明Annuli的模量必须收敛到0,以便在多个条件下,所有这些条件都显示为必要。

The modulus of a polynomial-like (PL) map is an important invariant that controls distortion of the straightening map and, hence, geometry of the corresponding PL Julia set. Lower bounds on the modulus, called complex a priori bounds, are known in a great variety of contexts. For any rational function we complement this by an upper bound for moduli of PL maps in the satellite case that depends only on the relative period and the degree of the PL map. This rules out a priori bounds in the satellite case with unbounded relative periods. We also apply our tools to obtain lower bounds for hyperbolic lengths of geodesics in the infinitely renormalizable case, and to show that moduli of annuli must converge to 0 for a sequence of arbitrary renormalizations, under several conditions all of which are shown to be necessary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源