论文标题

绿色加速树

Green Accelerated Hoeffding Tree

论文作者

Garcia-Martin, Eva, Bifet, Albert, Lavesson, Niklas, König, Rikard, Linusson, Henrik

论文摘要

最先进的机器学习解决方案主要集中于创建高度准确的模型,而没有对硬件资源的限制。流挖掘算法旨在在资源受限的设备上运行,因此,对低功率,能量和记忆效率的关注至关重要。 Hoeffding树算法能够创建节能型号,但与它们的合奏相比,其成本较少。另一方面,Hoeffding树的合奏会产生一棵高度准确的树木森林,但平均消耗五倍的能量。试图获得与Hoeffding树共同结果的扩展是非常快速的决策树(EFDT)。本文介绍了绿色加速的Hoeffding树(GAHT)算法,该算法是EFDT算法的扩展,具有较低的能量和内存足迹,并且具有相同的精度(对于某些数据集)的精度水平相同(或更高)。 GAHT根据每个特定叶子上实例数的分布,生长每个节点的单个分裂标准。结果表明,与EFDT相比,GAHT能够达到相同的竞争精度结果,同时将能源消耗降至70%。

State-of-the-art machine learning solutions mainly focus on creating highly accurate models without constraints on hardware resources. Stream mining algorithms are designed to run on resource-constrained devices, thus a focus on low power and energy and memory-efficient is essential. The Hoeffding tree algorithm is able to create energy-efficient models, but at the cost of less accurate trees in comparison to their ensembles counterpart. Ensembles of Hoeffding trees, on the other hand, create a highly accurate forest of trees but consume five times more energy on average. An extension that tried to obtain similar results to ensembles of Hoeffding trees was the Extremely Fast Decision Tree (EFDT). This paper presents the Green Accelerated Hoeffding Tree (GAHT) algorithm, an extension of the EFDT algorithm with a lower energy and memory footprint and the same (or higher for some datasets) accuracy levels. GAHT grows the tree setting individual splitting criteria for each node, based on the distribution of the number of instances over each particular leaf. The results show that GAHT is able to achieve the same competitive accuracy results compared to EFDT and ensembles of Hoeffding trees while reducing the energy consumption up to 70%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源