论文标题

主观耳鸣的互感元学习

Side-aware Meta-Learning for Cross-Dataset Listener Diagnosis with Subjective Tinnitus

论文作者

Li, Yun, Liu, Zhe, Yao, Lina, Lucas, Molly, Monaghan, Jessica J. M., Zhang, Yu

论文摘要

随着数字技术的发展,机器学习为下一代耳鸣诊断铺平了道路。尽管机器学习已被广​​泛应用于基于EEG的耳鸣分析中,但大多数当前模型都是数据集特异性的。每个数据集可能仅限于特定的症状,总体疾病严重程度和人口属性。此外,数据集格式可能会有所不同,从而影响模型性能。本文提出了用于交叉数据核诊断的据感知的元学习,该学习可以有效地对不同数据收集过程的不同年龄和性别的受试者进行细胞核分类。由于元学习的优势,我们的方法不依赖于传统深度学习模型等大型数据集。此外,我们设计了一个特定于主题的培训过程,以帮助该模型拟合不同患者或健康人员的数据模式。我们的方法在跨数据库分类中达到了73.8 \%的高精度。我们进行了广泛的分析,以表明耳朵的侧面信息在提高模型性能和侧感元学习方面的有效性,以提高学习能力的质量。

With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has been widely applied in EEG-based tinnitus analysis, most current models are dataset-specific. Each dataset may be limited to a specific range of symptoms, overall disease severity, and demographic attributes; further, dataset formats may differ, impacting model performance. This paper proposes a side-aware meta-learning for cross-dataset tinnitus diagnosis, which can effectively classify tinnitus in subjects of divergent ages and genders from different data collection processes. Owing to the superiority of meta-learning, our method does not rely on large-scale datasets like conventional deep learning models. Moreover, we design a subject-specific training process to assist the model in fitting the data pattern of different patients or healthy people. Our method achieves a high accuracy of 73.8\% in the cross-dataset classification. We conduct an extensive analysis to show the effectiveness of side information of ears in enhancing model performance and side-aware meta-learning in improving the quality of the learned features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源