论文标题

SPARCS:MMWave系统中集成通信和人类传感的稀疏恢复方法

SPARCS: A Sparse Recovery Approach for Integrated Communication and Human Sensing in mmWave Systems

论文作者

Pegoraro, Jacopo, Lacruz, Jesus Omar, Rossi, Michele, Widmer, Joerg

论文摘要

使用毫米波(MMWave)设备检测和对人类运动进行分类的良好方法是对不同身体部位的小尺度多普勒效应(称为微二倍体)的时间频率分析,这需要经常间隔且密集的通道脉冲响应响应(CIR)的定期间隔和密集的采样。目前,这是在文献中使用特殊用途雷达传感器进行的,或者中断通信以传输专用的传感波形,需要高高的开销和通道利用率。在这项工作中,我们提出了Sparcs,这是一种针对MMWave系统的集成的人类传感和通信解决方案。 SPARCS是第一种从不规则和稀疏的CIR样本(例如在通信交通方式中获得的)重建人类运动的高质量签名的第一种方法。为了实现这一目标,我们将Micro-Doppler提取作为一个稀疏的恢复问题,这对于在通信和传感之间平稳整合至关重要。此外,如果需要,只要没有通信流量或微型多普勒提取不足,我们的系统就可以无缝将简短的CIR估计字段注入通道。 Sparcs有效地利用了MMWave通道的固有稀疏性,从而大大降低了相对于可用方法的传感开销。我们在IEEE 802.11AY软件定义的无线电(SDR)平台上实现了SPARC,在60 GHz频段工作,收集符合实际WiFi接入点的流量模式的标准CIR痕迹。我们的结果表明,SPARC获得的微型多普勒签名可实现典型的下游应用,例如相对于现有方法,开销低7倍以上,同时实现更好的识别性能。

A well established method to detect and classify human movements using Millimeter-Wave ( mmWave) devices is the time-frequency analysis of the small-scale Doppler effect (termed micro-Doppler) of the different body parts, which requires a regularly spaced and dense sampling of the Channel Impulse Response ( CIR). This is currently done in the literature either using special-purpose radar sensors, or interrupting communications to transmit dedicated sensing waveforms, entailing high overhead and channel utilization. In this work we present SPARCS, an integrated human sensing and communication solution for mmWave systems. SPARCS is the first method that reconstructs high quality signatures of human movement from irregular and sparse CIR samples, such as the ones obtained during communication traffic patterns. To accomplish this, we formulate the micro-Doppler extraction as a sparse recovery problem, which is critical to enable a smooth integration between communication and sensing. Moreover, if needed, our system can seamlessly inject short CIR estimation fields into the channel whenever communication traffic is absent or insufficient for the micro-Doppler extraction. SPARCS effectively leverages the intrinsic sparsity of the mmWave channel, thus drastically reducing the sensing overhead with respect to available approaches. We implemented SPARCS on an IEEE 802.11ay Software Defined Radio (SDR) platform working in the 60 GHz band, collecting standard-compliant CIR traces matching the traffic patterns of real WiFi access points. Our results show that the micro-Doppler signatures obtained by SPARCS enable a typical downstream application such as human activity recognition with more than 7 times lower overhead with respect to existing methods, while achieving better recognition performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源