论文标题
光学偶极子微磨换中自旋速度的耦合动力学
Coupled dynamics of spin qubits in optical dipole microtraps
论文作者
论文摘要
偶极子微磨换或光学镊子中的单个原子最近已成为量子计算和仿真的有前途的平台。在这里,我们报告了对这种系统中Rydberg两Q Q Qubit Gate实现的物理学的详细理论分析 - 具有单个原子的量子计算中的基石协议。我们专注于封锁式纠缠门,并考虑各种脱谐后的过程,以限制其在真实系统中的性能。我们提供了最大纠缠状态的保真度的限制的数值估计,并预测了与嘈杂的两级栅极相对应的完整过程矩阵。我们的方法和结果可能会在数值模型中找到实现,以模拟和优化中性原子的量子处理器。
Single atoms in dipole microtraps or optical tweezers have recently become a promising platform for quantum computing and simulation. Here we report a detailed theoretical analysis of the physics underlying an implementation of a Rydberg two-qubit gate in such a system -- a cornerstone protocol in quantum computing with single atoms. We focus on a blockade-type entangling gate and consider various decoherence processes limiting its performance in a real system. We provide numerical estimates for the limits on fidelity of the maximally entangled states and predict the full process matrix corresponding to the noisy two-qubit gate. Our methods and results may find implementation in numerical models for simulation and optimization of neutral atom based quantum processors.