论文标题
部分可观测时空混沌系统的无模型预测
BiCo-Net: Regress Globally, Match Locally for Robust 6D Pose Estimation
论文作者
论文摘要
学习强大的6D姿势功能的挑战在于1)严重的阻塞和2)深度图像中的系统噪声。受点对功能的成功启发,本文的目标是通过局部匹配的模型和相机空间之间的本地匹配对点对从RGB-D图像进行了分割的对象实例的6D姿势。为此,我们提出了一个新型的双向对应图映射网络(BICO-NET),以首先生成以典型的姿势回归为指导的点云,因此可以将姿势敏感的信息纳入,以优化局部坐标及其正常矢量的产生。由于通过几何计算进行姿势预测仅依赖于一对局部方向的点,因此我们的BICO-NET可以针对稀疏和遮挡的点云实现稳健性。来自局部匹配和直接姿势回归的冗余姿势预测的合奏进一步完善了最终姿势输出,以噪音观察。三个普遍的基准测试数据集的实验结果可以验证我们的方法可以实现最先进的性能,尤其是对于更具挑战性的严重封闭场景而言。源代码可在https://github.com/gorilla-lab-scut/bico-net上找到。
The challenges of learning a robust 6D pose function lie in 1) severe occlusion and 2) systematic noises in depth images. Inspired by the success of point-pair features, the goal of this paper is to recover the 6D pose of an object instance segmented from RGB-D images by locally matching pairs of oriented points between the model and camera space. To this end, we propose a novel Bi-directional Correspondence Mapping Network (BiCo-Net) to first generate point clouds guided by a typical pose regression, which can thus incorporate pose-sensitive information to optimize generation of local coordinates and their normal vectors. As pose predictions via geometric computation only rely on one single pair of local oriented points, our BiCo-Net can achieve robustness against sparse and occluded point clouds. An ensemble of redundant pose predictions from locally matching and direct pose regression further refines final pose output against noisy observations. Experimental results on three popularly benchmarking datasets can verify that our method can achieve state-of-the-art performance, especially for the more challenging severe occluded scenes. Source codes are available at https://github.com/Gorilla-Lab-SCUT/BiCo-Net.