论文标题
Brainib:可解释的基于大脑网络的精神病学诊断,图形信息瓶颈
BrainIB: Interpretable Brain Network-based Psychiatric Diagnosis with Graph Information Bottleneck
论文作者
论文摘要
基于基础生物学机制而不是精神疾病的主观症状开发新的诊断模型是新的共识。最近,开发了使用功能连通性(FC)进行精神疾病和健康控制的基于机器学习的分类器,以识别大脑标记。但是,现有的基于机器学习的诊断模型容易拟合过度(由于培训样本不足),并且在新的测试环境中表现较差。此外,很难获得可解释且可靠的脑生物标志物来阐明潜在的诊断决策。这些问题阻碍了他们可能的临床应用。在这项工作中,我们提出了一个新的图神经网络(GNN)框架Brainib,以利用著名的信息瓶颈(IB)原理来分析功能磁共振图像(fMRI)。 Brainib能够识别大脑中最有用的边缘(即子图),并可以很好地概括到看不见的数据。我们评估了三个精神病学数据集对3个基准和7种最先进的脑网络分类方法的脑臂的性能,并观察到我们的脑袋始终达到最高的诊断准确性。它还发现了与临床和神经影像学发现一致的子图生物标志物。 brainib的源代码和实现详细信息可在GitHub存储库中自由获得(https://github.com/sjyucnel/sjyucnel/brain-and-and-information-bottleneck/)。
Developing a new diagnostic models based on the underlying biological mechanisms rather than subjective symptoms for psychiatric disorders is an emerging consensus. Recently, machine learning-based classifiers using functional connectivity (FC) for psychiatric disorders and healthy controls are developed to identify brain markers. However, existing machine learning-based diagnostic models are prone to over-fitting (due to insufficient training samples) and perform poorly in new test environment. Furthermore, it is difficult to obtain explainable and reliable brain biomarkers elucidating the underlying diagnostic decisions. These issues hinder their possible clinical applications. In this work, we propose BrainIB, a new graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI), by leveraging the famed Information Bottleneck (IB) principle. BrainIB is able to identify the most informative edges in the brain (i.e., subgraph) and generalizes well to unseen data. We evaluate the performance of BrainIB against 3 baselines and 7 state-of-the-art brain network classification methods on three psychiatric datasets and observe that our BrainIB always achieves the highest diagnosis accuracy. It also discovers the subgraph biomarkers which are consistent to clinical and neuroimaging findings. The source code and implementation details of BrainIB are freely available at GitHub repository (https://github.com/SJYuCNEL/brain-and-Information-Bottleneck/).