论文标题

广告模块化离散化的连续限制$ _2 $

The continuum limit of the modular discretization of AdS$_2$

论文作者

Axenides, Minos, Floratos, Emmanuel, Nicolis, Stam

论文摘要

根据“ T Hooft and Susskind的全息图”,黑洞熵,$ s _ {\ rm BH} $,由混乱的微观自由度携带,它们生活在近地平线几何形状,并具有有限尺寸的Hilbert空间,$ d = \ exp($ d = \ exp(s s _ p)在以前的工作中,我们提出,近地平线几何形状可以通过离散,有限的,随机的几何形状来描述,可以解释自由度的自由度,ads $ _2 [\ mathbb {z} _n] $,其中$ n $与$ s _ $ s_ _ {\ rm bh} $。作为一个空旷的问题,仍然是如何在n到达无穷大时恢复光滑的ADS2几何形状的方式。在这项贡献中,我们介绍了解决此问题的显着点,其中涉及将ADS $ _2 [\ MATHBB {Z} _n] $嵌入有限的几何形状家族中,ADS $ _2^m [\ MATHBB {Z} _n] $,其中$ M $是另一个Integer,是另一个Integer,在2+1 Minkowsski ins of 2+1 minkostki offere。在这种建筑中,$ n $和$ m $可以视为IR和UV截止。使用fibonacci和$ k $ -fibonAcci序列的属性,以相关的方式将$ n $和$ m $与无限的方式相关的方式来获得相当于平滑广告$ _2 $几何形状的连续限制。此方法也可以直接应用于高维广告的空间。

According to the holographic picture of 't Hooft and Susskind, the black hole entropy, $S_{\rm BH}$, is carried by the chaotic microscopic degrees of freedom, that live in the near horizon geometry and have a Hilbert space of states of finite dimension, $d=\exp(S_{\rm BH})$. In previous work we have proposed that the near horizon geometry, when the microscopic degrees of freedom can be resolved, can be described by the discrete, finite, random geometry, AdS$_2[\mathbb{Z}_N]$, where $N$ is proportional to $S_{\rm BH}$. What had remained as an open problem was how the smooth AdS2 geometry can be recovered, in the limit when N goes to infinity. In this contribution we present the salient points of the solution to this problem, which involves embedding AdS$_2[\mathbb{Z}_N]$ in a family of finite geometries, AdS$_2^M[\mathbb{Z}_N]$, where $M$ is another integer, within 2+1 Minkowski spacetime. In this construction $N$ and $M$ can be considered IR and UV cutoffs. The continuum limit, corresponding to the smooth AdS$_2$ geometry, is obtained by taking $N$ and $M$ to infinity in a correlated way, using properties of the Fibonacci and $k$-Fibonacci sequences. This method can be directly applied to higher-dimensional AdS spacetimes, also.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源