论文标题
高粱圆锥花序检测的高分辨率无人机图像生成
High-Resolution UAV Image Generation for Sorghum Panicle Detection
论文作者
论文摘要
高粱植物的圆锥花序(或头部)是植物发育和谷物产量估计的重要表型特征。无人驾驶汽车(UAV)的使用可以大规模收集和分析高粱图像。深度学习可以提供从无人机图像估算表型性状的方法,但需要大量标记的数据。由于劳动密集型的地面灌溉无人机图像,缺乏训练数据会导致开发高粱圆锥花序检测和计数方法的主要瓶颈。在本文中,我们提出了一种使用生成对抗网络(GAN)的合成训练图像来增强数据的方法,以增强高粱圆锥花序检测和计数的性能。我们的方法可以通过使用图像到图像翻译gan具有有限的真实无人机RGB图像的地面真相数据集,从而生成带有圆锥花序标签的合成高分辨率RGB图像。结果表明,使用我们的数据增强方法进行了圆锥花序检测和计数的改进。
The number of panicles (or heads) of Sorghum plants is an important phenotypic trait for plant development and grain yield estimation. The use of Unmanned Aerial Vehicles (UAVs) enables the capability of collecting and analyzing Sorghum images on a large scale. Deep learning can provide methods for estimating phenotypic traits from UAV images but requires a large amount of labeled data. The lack of training data due to the labor-intensive ground truthing of UAV images causes a major bottleneck in developing methods for Sorghum panicle detection and counting. In this paper, we present an approach that uses synthetic training images from generative adversarial networks (GANs) for data augmentation to enhance the performance of Sorghum panicle detection and counting. Our method can generate synthetic high-resolution UAV RGB images with panicle labels by using image-to-image translation GANs with a limited ground truth dataset of real UAV RGB images. The results show the improvements in panicle detection and counting using our data augmentation approach.