论文标题

多变量时间序列数据的深度联合性异常检测

Deep Federated Anomaly Detection for Multivariate Time Series Data

论文作者

Zhu, Wei, Song, Dongjin, Chen, Yuncong, Cheng, Wei, Zong, Bo, Mizoguchi, Takehiko, Lumezanu, Cristian, Chen, Haifeng, Luo, Jiebo

论文摘要

尽管已经开发了许多用于多元时间序列数据的异常检测方法,但在禁止使用数据共享的同时,在联合设置中进行了有限的努力,在该设置中,多变量时间序列数据在不同的边缘设备之间分布。在本文中,我们研究了联合无监督的异常检测的问题,并提出了一个基于联邦示例的深神经网络(FED-EXDNN),以进行不同边缘设备上多元时间序列数据的异常检测。具体而言,我们首先设计了一个基于示例的深神经网络(EXDNN),以基于其与示例模块的兼容性学习本地时间序列表示,该模块由所学的隐藏参数组成,以捕获每个边缘设备上正常模式的品种。接下来,在集中式服务器上采用了一个约束的聚类机制(FedCC)来对齐和汇总不同本地示例模块的参数,以获得统一的全局示例模块。最后,将全局示例模块与每个边缘设备的共享特征编码器一起部署,并通过检查测试数据到示例模块的兼容性来进行异常检测。 Fed-exdnn用EXDNN捕获了当地的正常时间序列模式,并通过FedCC汇总了这些模式,因此可以同时处理分布在不同边缘设备上的异质数据。对六个公共数据集的彻底实证研究表明,EXDNN和FED-EXDNN可以优于最先进的异常检测算法和联合学习技术。

Despite the fact that many anomaly detection approaches have been developed for multivariate time series data, limited effort has been made on federated settings in which multivariate time series data are heterogeneously distributed among different edge devices while data sharing is prohibited. In this paper, we investigate the problem of federated unsupervised anomaly detection and present a Federated Exemplar-based Deep Neural Network (Fed-ExDNN) to conduct anomaly detection for multivariate time series data on different edge devices. Specifically, we first design an Exemplar-based Deep Neural network (ExDNN) to learn local time series representations based on their compatibility with an exemplar module which consists of hidden parameters learned to capture varieties of normal patterns on each edge device. Next, a constrained clustering mechanism (FedCC) is employed on the centralized server to align and aggregate the parameters of different local exemplar modules to obtain a unified global exemplar module. Finally, the global exemplar module is deployed together with a shared feature encoder to each edge device and anomaly detection is conducted by examining the compatibility of testing data to the exemplar module. Fed-ExDNN captures local normal time series patterns with ExDNN and aggregates these patterns by FedCC, and thus can handle the heterogeneous data distributed over different edge devices simultaneously. Thoroughly empirical studies on six public datasets show that ExDNN and Fed-ExDNN can outperform state-of-the-art anomaly detection algorithms and federated learning techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源