论文标题

拜占庭式攻击下的联邦多军匪徒

Federated Multi-Armed Bandits Under Byzantine Attacks

论文作者

Saday, Artun, Demirel, İlker, Yıldırım, Yiğit, Tekin, Cem

论文摘要

多臂匪徒(MAB)是一个顺序的决策模型,其中学习者控制探索和开发之间的权衡,以最大程度地提高其累积奖励。联邦多军匪徒(FMAB)是一个新兴框架,其中一系列具有异质本地模型的学习者可以玩MAB游戏,并将其汇总反馈传达给服务器,以学习全球最佳的ARM。 FMAB中的两个关键障碍是沟通有效的学习和对对抗攻击的韧性。为了解决这些问题,我们在拜占庭客户的存在下研究了FMAB问题,他们可以发送威胁学习过程的错误模型更新。我们分析了样本复杂性和$β$ - 最佳手臂识别的遗憾。我们从强大的统计数据中借用工具,并提出了基于均值(MOM)的在线算法(FED-MOM-UCB)的工具,以应对拜占庭客户。特别是,我们表明,如果拜占庭客户构成不到队列的一半,那么关于$β$ - 最佳武器的累积遗憾随着时间的流逝而有限制,以很高的可能性,展示了交流效率和拜占庭式的弹性。我们分析了算法参数之间的相互作用,识别性差,遗憾,沟通成本和武器的次优差距。我们通过实验证明了在存在拜占庭式攻击的情况下,在存在拜占庭式攻击的情况下对基本线的有效性。

Multi-armed bandits (MAB) is a sequential decision-making model in which the learner controls the trade-off between exploration and exploitation to maximize its cumulative reward. Federated multi-armed bandits (FMAB) is an emerging framework where a cohort of learners with heterogeneous local models play an MAB game and communicate their aggregated feedback to a server to learn a globally optimal arm. Two key hurdles in FMAB are communication-efficient learning and resilience to adversarial attacks. To address these issues, we study the FMAB problem in the presence of Byzantine clients who can send false model updates threatening the learning process. We analyze the sample complexity and the regret of $β$-optimal arm identification. We borrow tools from robust statistics and propose a median-of-means (MoM)-based online algorithm, Fed-MoM-UCB, to cope with Byzantine clients. In particular, we show that if the Byzantine clients constitute less than half of the cohort, the cumulative regret with respect to $β$-optimal arms is bounded over time with high probability, showcasing both communication efficiency and Byzantine resilience. We analyze the interplay between the algorithm parameters, a discernibility margin, regret, communication cost, and the arms' suboptimality gaps. We demonstrate Fed-MoM-UCB's effectiveness against the baselines in the presence of Byzantine attacks via experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源