论文标题

RCMNET:深度学习模型有助于CAR-T治疗白血病

RCMNet: A deep learning model assists CAR-T therapy for leukemia

论文作者

Zhang, Ruitao, Han, Xueying, Gul, Ijaz, Zhai, Shiyao, Liu, Ying, Zhang, Yongbing, Dong, Yuhan, Ma, Lan, Yu, Dongmei, Zhou, Jin, Qin, Peiwu

论文摘要

急性白血病是一种血液癌,死亡率很高。当前的治疗方法包括骨髓移植,支持治疗和化学疗法。尽管可以实现令人满意的疾病缓解,但复发的风险仍然很高。因此,新颖的治疗方法要求。嵌合抗原受体-T(CAR-T)治疗已成为治疗和治愈急性白血病的一种有前途的方法。为了利用CAR-T细胞治疗对血液疾病的治疗潜力,可靠的细胞形态鉴定至关重要。然而,CAR-T细胞的鉴定是它们与其他血细胞的表型相似性带来的巨大挑战。为了应对这一重大临床挑战,在这里,我们首先在染色后首先构建一个带有500个原始显微镜图像的CAR-T数据集。之后,我们创建了一个新颖的集成模型,称为RCMNET(带有CBAM和MHSA的RESNET18),该模型结合了卷积神经网络(CNN)和变压器。该模型在公共数据集上显示了99.63%的TOP-1精度。与以前的报告相比,我们的模型为图像分类获得了令人满意的结果。尽管在CAR-T细胞数据集上进行了测试,但仍观察到不错的性能,这归因于数据集的大小有限。转移学习适用于RCMNET,最大83.36%的精度已比其他SOTA模型高。该研究评估了RCMNET在大型公共数据集中的有效性,并将其转换为临床数据集以进行诊断应用。

Acute leukemia is a type of blood cancer with a high mortality rate. Current therapeutic methods include bone marrow transplantation, supportive therapy, and chemotherapy. Although a satisfactory remission of the disease can be achieved, the risk of recurrence is still high. Therefore, novel treatments are demanding. Chimeric antigen receptor-T (CAR-T) therapy has emerged as a promising approach to treat and cure acute leukemia. To harness the therapeutic potential of CAR-T cell therapy for blood diseases, reliable cell morphological identification is crucial. Nevertheless, the identification of CAR-T cells is a big challenge posed by their phenotypic similarity with other blood cells. To address this substantial clinical challenge, herein we first construct a CAR-T dataset with 500 original microscopy images after staining. Following that, we create a novel integrated model called RCMNet (ResNet18 with CBAM and MHSA) that combines the convolutional neural network (CNN) and Transformer. The model shows 99.63% top-1 accuracy on the public dataset. Compared with previous reports, our model obtains satisfactory results for image classification. Although testing on the CAR-T cells dataset, a decent performance is observed, which is attributed to the limited size of the dataset. Transfer learning is adapted for RCMNet and a maximum of 83.36% accuracy has been achieved, which is higher than other SOTA models. The study evaluates the effectiveness of RCMNet on a big public dataset and translates it to a clinical dataset for diagnostic applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源