论文标题

一个新颖的增强现实超声框架,使用RGB-D相机和3D打印标记

A Novel Augmented Reality Ultrasound Framework Using an RGB-D Camera and a 3D-printed Marker

论文作者

Zhou, Yitian, Lelu, Gaétan, Labbé, Boris, Pasquier, Guillaume, Gargasson, Pierre Le, Murienne, Albert, Launay, Laurent

论文摘要

目的。在3D操作空间中找到和跟踪超声图像的能力对于多个临床应用是很大的好处。这通常是通过使用精确但昂贵的光学或电磁跟踪系统跟踪探针来完成的。我们的目标是使用标准的RGB-D摄像头开发一个简单且低成本的增强现实式地位框架。 方法。由枕骨结构核心RGB-D摄像头,特定设计的3D标记和快速点云注册算法偏爱组成的原型系统,并在超声超声系统上进行了评估。使用软件加工具包在3D打印的N线幻影上校准探针。简化了所提出的校准方法,不需要附加到幻影上的其他标记或传感器。此外,开发了基于OpenGL的可视化软件,用于增强现实应用程序。 结果。在模拟的针插入方案中,使用校准的探针来增强现实世界的视频。在视频中渲染了超声图像,并观察到视觉上的结果。我们评估了AR US框架的端到端精度,以定位5厘米尺寸的立方体。从我们的两个实验中,目标定位误差范围为5.6至5.9 mm,从-3.9到4.2度。 结论。我们认为,随着未来集成在移动设备和AR眼镜中的RGB-D摄像机的潜在民主化,我们的原型解决方案可能有助于在临床常规中使用3D徒手超声。未来的工作应包括更严格,更全面的评估,通过将校准精度与在模拟和真实医疗方案中通过商业跟踪解决方案获得的校准精度进行比较。

Purpose. Ability to locate and track ultrasound images in the 3D operating space is of great benefit for multiple clinical applications. This is often accomplished by tracking the probe using a precise but expensive optical or electromagnetic tracking system. Our goal is to develop a simple and low cost augmented reality echography framework using a standard RGB-D Camera. Methods. A prototype system consisting of an Occipital Structure Core RGB-D camera, a specifically-designed 3D marker, and a fast point cloud registration algorithm FaVoR was developed and evaluated on an Ultrasonix ultrasound system. The probe was calibrated on a 3D-printed N-wire phantom using the software PLUS toolkit. The proposed calibration method is simplified, requiring no additional markers or sensors attached to the phantom. Also, a visualization software based on OpenGL was developed for the augmented reality application. Results. The calibrated probe was used to augment a real-world video in a simulated needle insertion scenario. The ultrasound images were rendered on the video, and visually-coherent results were observed. We evaluated the end-to-end accuracy of our AR US framework on localizing a cube of 5 cm size. From our two experiments, the target pose localization error ranges from 5.6 to 5.9 mm and from -3.9 to 4.2 degrees. Conclusion. We believe that with the potential democratization of RGB-D cameras integrated in mobile devices and AR glasses in the future, our prototype solution may facilitate the use of 3D freehand ultrasound in clinical routine. Future work should include a more rigorous and thorough evaluation, by comparing the calibration accuracy with those obtained by commercial tracking solutions in both simulated and real medical scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源