论文标题
圆环上的奇怪着色
Odd colouring on the torus
论文作者
论文摘要
如果每个非分类顶点$ v $ of $ g $,则据说对简单图$ g $的正确顶点颜色是奇怪的,在$ v $的附近,某些颜色似乎是奇怪的次数。我们表明,如果$ g $嵌入了圆环中,那么它承认了一个适当的奇数顶点色,最多为$ 9 $。
A proper vertex-colouring of a simple graph $G$ is said to be odd if, for every non-isolated vertex $v$ of $G$, some colour appears an odd number of times in the neighbourhood of $v$. We show that if $G$ embeds in the torus, then it admits a proper odd vertex-colouring with at most $9$ colours.