论文标题
贝叶斯逆问题的有效算法 - 马特纳先生
Efficient algorithms for Bayesian Inverse Problems with Whittle--Matérn Priors
论文作者
论文摘要
本文根据基于矮胖的 - 马特恩高斯随机场来解决针对贝叶斯逆问题的有效方法。 Whittle-matérn先验的特征是平均函数和协方差算子,该功能被视为椭圆差分运算符的负功率。这种方法是灵活的,因为它可以包含多种先前的信息,包括非平稳效应,但目前仅对指数的整数值进行计算有利。在本文中,我们得出了一种有效的方法来处理指数的所有可接受的非企业值。该方法首先使用有限的元素和正交分配协方差算子,并使用偏移的线性系统使用预处理的Krylov子空间求解器来有效地将所得的协方差矩阵应用于向量。这种方法可用于以两种不同的方式从分布中生成样品:通过求解随机部分微分方程,并使用截短的karhunen-loève扩展。我们展示了如何将此先前的表示形式纳入无限维贝叶斯公式,并展示如何有效计算最大后验估计值并近似后方差。尽管本文的重点放在贝叶斯反问题上,但此处开发的技术适用于求解具有分数拉普拉斯主义者和高斯随机场的系统。数值实验证明了求解器的性能和可扩展性及其对模型和实用数据逆问题的适用性以及与时间有关的热方程。
This paper tackles efficient methods for Bayesian inverse problems with priors based on Whittle--Matérn Gaussian random fields. The Whittle--Matérn prior is characterized by a mean function and a covariance operator that is taken as a negative power of an elliptic differential operator. This approach is flexible in that it can incorporate a wide range of prior information including non-stationary effects, but it is currently computationally advantageous only for integer values of the exponent. In this paper, we derive an efficient method for handling all admissible noninteger values of the exponent. The method first discretizes the covariance operator using finite elements and quadrature, and uses preconditioned Krylov subspace solvers for shifted linear systems to efficiently apply the resulting covariance matrix to a vector. This approach can be used for generating samples from the distribution in two different ways: by solving a stochastic partial differential equation, and by using a truncated Karhunen-Loève expansion. We show how to incorporate this prior representation into the infinite-dimensional Bayesian formulation, and show how to efficiently compute the maximum a posteriori estimate, and approximate the posterior variance. Although the focus of this paper is on Bayesian inverse problems, the techniques developed here are applicable to solving systems with fractional Laplacians and Gaussian random fields. Numerical experiments demonstrate the performance and scalability of the solvers and their applicability to model and real-data inverse problems in tomography and a time-dependent heat equation.