论文标题
在广义最小重力的框架中,模块化的汉密尔顿
Modular Hamiltonian in flat holography in the framework of generalized minimal massive gravity
论文作者
论文摘要
最近,Apolo等人提供了用于确定真空模块化流量发生器和相应的模块化汉密尔顿(BMSFTS)中的一般处方。 al \ cite {apolo}。根据本文,在渐近平坦的三维空间中,爱因斯坦重力对BMSFT是双重的。在本文中,我们将这项研究扩展到广义最小的大型重力模型(GMMG)。因此,我们研究了该模型框架中$ Flat_3/bmsft $全息图的某些方面。我们在热和非热BMSFT的单个间隔中得出模块化的哈密顿量,并显示其全息双重双重是与保留度量标准渐近形式相关的引力电荷。同样,我们使用模块化的哈密顿量,得出了纠缠熵的第一定律。当$μ,m^2 \ to \ infty $和$σ= -1 $时,我们对GMMG模型的结果将Einstein Gravity的结果减少到Einstein Gravity的结果。这些限制案例是模型参数空间中的一个地方,其中GMMG模型会减少到爱因斯坦重力。
Recently a general prescription for determining the vacuum modular flow generator and the corresponding modular Hamiltonian in the BMS-invariant field theories (BMSFTs) have provided by Apolo et. al \cite{Apolo}. According to this paper Einstein gravity in asymptotically flat three-dimensional spacetimes is dual to a BMSFT. In the present paper we extend this study to the generalized minimal massive gravity model (GMMG). So we study some aspects of $Flat_3/BMSFT$ holography in the framework of this model. We derive the modular Hamiltonian for single intervals in thermal and non-thermal BMSFTs and show its holographic dual is the gravitational charge associated with isometries that preserve the asymptotic form of the metric. Also using the modular Hamiltonian we derive the first law of entanglement entropy. Our results for GMMG model reduces to the result for Einstein gravity in $2+1$ dimension, when $μ, m^2 \to \infty $, and $σ=-1$. These limiting cases, are a place in parameter space of model, where GMMG model reduces to the Einstein gravity.