论文标题

对机器学习的光晕质量概况的起源的见解

Insights into the origin of halo mass profiles from machine learning

论文作者

Lucie-Smith, Luisa, Adhikari, Susmita, Wechsler, Risa H.

论文摘要

暗物质光环的质量分布是通过质量积聚和合并通过批量摄动的分层生长的结果。我们使用一个可解释的机器学习框架来提供对暗物质光环的球形平均质量概况的起源的物理见解。我们训练梯度提高树算法,以预测聚类大小的光环的最终质量曲线,并衡量提供给算法的不同输入的重要性。我们在初始条件(IC)(ICS)中找到了两个主要尺度,它们影响最终的质量曲线:大约在Haloes的Lagrangian Patch $ r_l $($ r \ sim 0.7 \,r_l $)和大规模环境($ r \ r \ sim sim 1.7〜r_l $)中的密度约为。该模型还确定了光环组装历史上的三个主要时间尺度,这些时间量表会影响最终的特征:(i)旋转序列化的,在光晕内折叠的材料的形成时间,(ii)动态时间,该动态时间捕获了动态不弥补的,在其第一个Orbit(III)中,(iii)属于MERSER构造的halo的动态无段,升级成分,捕获了最近的时间表,该元素构成了该元素的影响。尽管内部轮廓保留了IC的内存,但仅此信息就不足以对外部轮廓产生准确的预测。当我们添加有关Haloes的质量积聚历史的信息时,我们发现所有半径的预测概况都有显着改善。我们的机器学习框架为ICS和质量组装历史的作用提供了新的见解,并在确定集群大小的光环的最终质量概况中。

The mass distribution of dark matter haloes is the result of the hierarchical growth of initial density perturbations through mass accretion and mergers. We use an interpretable machine-learning framework to provide physical insights into the origin of the spherically-averaged mass profile of dark matter haloes. We train a gradient-boosted-trees algorithm to predict the final mass profiles of cluster-sized haloes, and measure the importance of the different inputs provided to the algorithm. We find two primary scales in the initial conditions (ICs) that impact the final mass profile: the density at approximately the scale of the haloes' Lagrangian patch $R_L$ ($R\sim 0.7\, R_L$) and that in the large-scale environment ($R\sim 1.7~R_L$). The model also identifies three primary time-scales in the halo assembly history that affect the final profile: (i) the formation time of the virialized, collapsed material inside the halo, (ii) the dynamical time, which captures the dynamically unrelaxed, infalling component of the halo over its first orbit, (iii) a third, most recent time-scale, which captures the impact on the outer profile of recent massive merger events. While the inner profile retains memory of the ICs, this information alone is insufficient to yield accurate predictions for the outer profile. As we add information about the haloes' mass accretion history, we find a significant improvement in the predicted profiles at all radii. Our machine-learning framework provides novel insights into the role of the ICs and the mass assembly history in determining the final mass profile of cluster-sized haloes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源