论文标题

基于元学习的知识外推针对联合环境中的知识图

Meta-Learning Based Knowledge Extrapolation for Knowledge Graphs in the Federated Setting

论文作者

Chen, Mingyang, Zhang, Wen, Yao, Zhen, Chen, Xiangnan, Ding, Mengxiao, Huang, Fei, Chen, Huajun

论文摘要

我们研究了在联合环境中带有新兴知识图(KGS)附带的新组件(即实体和关系)的知识外推问题。在这个问题中,对现有公斤训练的模型需要将新兴的公园与看不见的实体和关系嵌入。为了解决这个问题,我们介绍了元学习设置,其中在现有kg上采样一组任务,以模仿新兴kg上的链接预测任务。基于采样任务,我们将基于它们的结构信息和输出嵌入的图形神经网络框架进行元图神经网络框架。实验结果表明,我们提出的方法可以有效地嵌入看不见的组件,并优于考虑直接使用常规KG嵌入方法的KG和基准的诱导设置的模型。

We study the knowledge extrapolation problem to embed new components (i.e., entities and relations) that come with emerging knowledge graphs (KGs) in the federated setting. In this problem, a model trained on an existing KG needs to embed an emerging KG with unseen entities and relations. To solve this problem, we introduce the meta-learning setting, where a set of tasks are sampled on the existing KG to mimic the link prediction task on the emerging KG. Based on sampled tasks, we meta-train a graph neural network framework that can construct features for unseen components based on structural information and output embeddings for them. Experimental results show that our proposed method can effectively embed unseen components and outperforms models that consider inductive settings for KGs and baselines that directly use conventional KG embedding methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源