论文标题

知识增强机器学习,并在自主驾驶中应用:一项调查

Knowledge Augmented Machine Learning with Applications in Autonomous Driving: A Survey

论文作者

Wörmann, Julian, Bogdoll, Daniel, Brunner, Christian, Bührle, Etienne, Chen, Han, Chuo, Evaristus Fuh, Cvejoski, Kostadin, van Elst, Ludger, Gottschall, Philip, Griesche, Stefan, Hellert, Christian, Hesels, Christian, Houben, Sebastian, Joseph, Tim, Keil, Niklas, Kelsch, Johann, Keser, Mert, Königshof, Hendrik, Kraft, Erwin, Kreuser, Leonie, Krone, Kevin, Latka, Tobias, Mattern, Denny, Matthes, Stefan, Motzkus, Franz, Munir, Mohsin, Nekolla, Moritz, Paschke, Adrian, von Pilchau, Stefan Pilar, Pintz, Maximilian Alexander, Qiu, Tianming, Qureishi, Faraz, Rizvi, Syed Tahseen Raza, Reichardt, Jörg, von Rueden, Laura, Sagel, Alexander, Sasdelli, Diogo, Scholl, Tobias, Schunk, Gerhard, Schwalbe, Gesina, Shen, Hao, Shoeb, Youssef, Stapelbroek, Hendrik, Stehr, Vera, Srinivas, Gurucharan, Tran, Anh Tuan, Vivekanandan, Abhishek, Wang, Ya, Wasserrab, Florian, Werner, Tino, Wirth, Christian, Zwicklbauer, Stefan

论文摘要

代表性数据集的可用性是许多成功的人工智能和机器学习模型的重要先决条件。但是,在现实生活中,这些模型通常会遇到用于培训数据中的情况不足的情况。缺乏足够数据的原因有多种,从时间和成本限制到道德考虑。结果,这些模型的可靠用途,尤其是在安全至关重要的应用中,仍然是一个巨大的挑战。利用其他已经存在的知识来源是克服纯粹数据驱动方法的局限性的关键。知识增强的机器学习方法提供了补偿数据中缺陷,错误或歧义的可能性,从而提高了应用模型的概括能力。更重要的是,即使在代表性不足的情况下,符合知识的预测对于做出值得信赖和安全的决策至关重要。这项工作概述了文献中现有的技术和方法,这些技术和方法将数据驱动的模型与现有知识相结合。确定的方法是根据知识集成,提取和顺从性的类别结构的。特别是,我们解决了所提出的方法在自主驾驶领域的应用。

The availability of representative datasets is an essential prerequisite for many successful artificial intelligence and machine learning models. However, in real life applications these models often encounter scenarios that are inadequately represented in the data used for training. There are various reasons for the absence of sufficient data, ranging from time and cost constraints to ethical considerations. As a consequence, the reliable usage of these models, especially in safety-critical applications, is still a tremendous challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches. Knowledge augmented machine learning approaches offer the possibility of compensating for deficiencies, errors, or ambiguities in the data, thus increasing the generalization capability of the applied models. Even more, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-driven models with existing knowledge. The identified approaches are structured according to the categories knowledge integration, extraction and conformity. In particular, we address the application of the presented methods in the field of autonomous driving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源