论文标题

深度学习的方案,用于奇异的对流扩散问题

Deep Learning-based Schemes for Singularly Perturbed Convection-Diffusion Problems

论文作者

Beguinet, A., Ehrlacher, V., Flenghi, R., Fuente, M., Mula, O., Somacal, A.

论文摘要

基于深度学习的数值方案,例如物理知情的神经网络(PINN),最近已成为解决偏微分方程(PDE)的经典数值方案的替代方法。一见一见钟情,因为基于强剩余形式的Pinns实施香草版本很容易,并且神经网络具有很高的近似功能。但是,当PDE解决方案较低时,需要专家洞察力来构建不会在各种犯罪中产生的深度学习配方。优化求解器也受到重大挑战,并且由于与不良本地最小值的收敛和不良的概括能力,可能会破坏近似解决方案的最终质量。在本文中,我们介绍了详尽的数值研究,对解决方案表现低时的优点和局限性进行了详尽的数值研究,并在溶液非常平滑时将表现相对于更良性的情况进行比较。为了支持我们的研究,我们认为对对流 - 扩散问题的奇异性问题通常会降低解决方案的规律性,因为某些多尺度参数为零。

Deep learning-based numerical schemes such as Physically Informed Neural Networks (PINNs) have recently emerged as an alternative to classical numerical schemes for solving Partial Differential Equations (PDEs). They are very appealing at first sight because implementing vanilla versions of PINNs based on strong residual forms is easy, and neural networks offer very high approximation capabilities. However, when the PDE solutions are low regular, an expert insight is required to build deep learning formulations that do not incur in variational crimes. Optimization solvers are also significantly challenged, and can potentially spoil the final quality of the approximated solution due to the convergence to bad local minima, and bad generalization capabilities. In this paper, we present an exhaustive numerical study of the merits and limitations of these schemes when solutions exhibit low-regularity, and compare performance with respect to more benign cases when solutions are very smooth. As a support for our study, we consider singularly perturbed convection-diffusion problems where the regularity of solutions typically degrades as certain multiscale parameters go to zero.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源