论文标题

在极端质量比率中建模瞬时共振

Modeling transient resonances in extreme-mass-ratio inspirals

论文作者

Gupta, Priti, Speri, Lorenzo, Bonga, Béatrice, Chua, Alvin J. K., Tanaka, Takahiro

论文摘要

极端质量比率的灵感是空间干涉仪(例如Lisa,Tianqin)的最令人兴奋,最有前途的目标来源之一。对其发射的引力波的观察将对相对论的一般理论提供严格的测试,并提供有关银河中心密集环境的大量信息。为了解锁这种潜力,有必要正确表征EMRI信号。但是,共振是在EMRI系统中发生的现象,并且会影响参数推断,因此,如果无法正确建模,则科学结果。在这里,我们探讨了如何建模共振并开发有效的实现。我们以前的工作表明,附近天体物理对象的潮汐场引起的潮汐共振会改变轨道的进化,从而导致可观察到的参数空间的显着倾向。在这里,我们广泛地探索了具有附加共振组合的潮汐Perturber的更通用模型,以研究共振强度对内在轨道和潮汐参数的依赖性。为了分析共振信号,需要正确合并潮汐场效果的准确模板。通过谐振的演变是使用阶跃函数获得的,该步骤函数的幅度是使用共振跳跃的分析插值计算的。我们通过将我们的近似方法与数值进化进行比较来基准此过程。我们发现,就参数空间中的天文学合理范围而言,这种简化的处方没有引起的显着错误。此外,我们使用Fisher矩阵研究参数的测量精度和由于不准确的建模而引起的系统偏见。也可以使用本研究中提出的实现进行自力共振的建模,这对于EMRI波形建模至关重要。

Extreme-mass-ratio inspirals are one of the most exciting and promising target sources for space-based interferometers (such as LISA, TianQin). The observation of their emitted gravitational waves will offer stringent tests on general theory of relativity, and provide a wealth of information about the dense environment in galactic centers. To unlock such potential, it is necessary to correctly characterize EMRI signals. However, resonances are a phenomena that occurs in EMRI systems and can impact parameter inference, and therefore the science outcome, if not properly modeled. Here, we explore how to model resonances and develop an efficient implementation. Our previous work has demonstrated that tidal resonances induced by the tidal field of a nearby astrophysical object alters the orbital evolution, leading to a significant dephasing across observable parameter space. Here, we extensively explore a more generic model for the tidal perturber with additional resonance combinations, to study the dependence of resonance strength on the intrinsic orbital and tidal parameters. To analyze the resonant signals, accurate templates that correctly incorporate the effects of the tidal field are required. The evolution through resonances is obtained using a step function, whose amplitude is calculated using an analytic interpolation of the resonance jumps. We benchmark this procedure by comparing our approximate method to a numerical evolution. We find that there is no significant error caused by this simplified prescription, as far as the astronomically reasonable range in the parameter space is concerned. Further, we use Fisher matrices to study both the measurement precision of parameters and the systematic bias due to inaccurate modeling. Modeling of self-force resonances can also be carried out using the implementation presented in this study, which will be crucial for EMRI waveform modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源