论文标题

化学势,衍生性不连续性,分数电子,Kohn-Sham电位的跳跃,作为热力学开放系统的原子以及分子中电子功能理论的其他(MIS)概念(MIS)概念

Chemical potential, derivative discontinuity, fractional electrons, jump of the Kohn-Sham potential, atoms as thermodynamic open systems, and other (mis)conceptions of the density functional theory of electrons in molecules

论文作者

Baerends, Evert Jan

论文摘要

密度功能理论(DFT)文献中存在许多参考文献,表现于原子或分子中电子的化学潜力。该概念的起源是鉴定了Lagrange乘数$μ= \ partial E/\ partial n $在欧拉 - 拉格朗日变化方程中,基态密度是电子的化学电位。我们首先讨论为什么在这种情况下,Lagrange乘数是任意常数,因此不能是原子或分子的物理特征。当电子编号越过整数(称为整数不连续性或衍生性不连续性)时,能量衍生物(“化学电位”)从$ -i $转换为$ -a $不是物理的,而仅在非物理非智能电子系统以及相应的能量和相应的$ \ \ partivative $ \ \ partial e/partial e pertial n $ contime contime and Chorne an Chorncont中。讨论了这个问题实际上是否可以在原子和分子等少数电子系统中定义化学电位的热力学概念。结论是,这样的系统缺乏热力学系统的重要特征,并且无法提供化学潜力的定义。它们也不能被视为热力学开放系统的类似物,这些系统可以与环境(颗粒浴或Gibbsian合奏的其他成员)交换颗粒。热力学(统计机械)概念,例如化学势,开放系统,大规范合奏等,不适用于少数电子系统,例如原子或分子。根据这些发现,对DFT中的许多主题进行了严格的审查:越过整数电子时,Kohn-Sham潜力跳跃,带隙问题,从而从距离线误差偏差,合奏在DFT中的作用。

Many references exist in the density functional theory (DFT) literature to the chemical potential of the electrons in an atom or a molecule. The origin of this notion has been the identification of the Lagrange multiplier $μ= \partial E/\partial N$ in the Euler-Lagrange variational equation for the ground state density as the chemical potential of the electrons. We first discuss why the Lagrange multiplier in this case is an arbitrary constant and therefore cannot be a physical characteristic of an atom or molecule. The switching of the energy derivative ("chemical potential") from $-I$ to $-A$ when the electron number crosses the integer, called integer discontinuity or derivative discontinuity, is not physical but only occurs when the nonphysical noninteger electron systems and the corresponding energy and derivative $\partial E/\partial N$ are chosen in a specific discontinuous way. The question is discussed whether in fact the thermodynamical concept of a chemical potential can be defined for the electrons in such few-electron systems as atoms and molecules. The conclusion is that such systems lack important characteristics of thermodynamic systems and do not afford the definition of a chemical potential. They also cannot be considered as analogues of the open systems of thermodynamics that can exchange particles with an environment (a particles bath or other members of a Gibbsian ensemble). Thermodynamical (statistical mechanical) concepts like chemical potential, open systems, grand canonical ensemble etc. are not applicable to a few electron system like an atom or molecule. A number of topics in DFT are critically reviewed in the light of these findings: jumps in the Kohn-Sham potential when crossing an integer number of electrons, the band gap problem, the deviation-from-straight-lines error, the role of ensembles in DFT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源