论文标题

扩展扩展器的超临界随机子图及其后果

Expansion in Supercritical Random Subgraphs of Expanders and its Consequences

论文作者

Diskin, Sahar, Krivelevich, Michael

论文摘要

2004年,Frieze,Krivelevich和Martin [17]在伪随机图的随机子图中建立了巨型成分的出现。我们研究了巨型成分的几种典型特性,最著名的是其扩展特性。我们在巨人中建立了连接集的渐近顶点扩展,$ \ tilde {o} \ left(ε^2 \ right)$。从这些扩展属性中,我们得出巨人的直径通常为$ o_is \ left(\ log n \ right)$,并且在巨型上懒惰的随机步行的混合时间是渐近的$ o_is \ left(\ log log^2 n \ right)$。我们还显示了巨人(不一定连接的)线性大小子集的相似渐近扩展特性,并且典型的大型扩展器作为亚图。

In 2004, Frieze, Krivelevich and Martin [17] established the emergence of a giant component in random subgraphs of pseudo-random graphs. We study several typical properties of the giant component, most notably its expansion characteristics. We establish an asymptotic vertex expansion of connected sets in the giant by a factor of $\tilde{O}\left(ε^2\right)$. From these expansion properties, we derive that the diameter of the giant is typically $O_ε\left(\log n\right)$, and that the mixing time of a lazy random walk on the giant is asymptotically $O_ε\left(\log^2 n\right)$. We also show similar asymptotic expansion properties of (not necessarily connected) linear sized subsets in the giant, and the typical existence of a large expander as a subgraph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源