论文标题

着色强的产品

Colouring Strong Products

论文作者

Esperet, Louis, Wood, David R.

论文摘要

最近的结果表明,几个重要的图形类可以嵌入为简单图类类(路径,小集团或有界树宽的图形)的强产物的子图。本文开发了一般技术,以结合色数(及其流行的变体,例如具有更简单的图形类别的一般图的强产物,例如路径,以及更通用的有界树宽的图形图。我们还重点介绍了(分数)强产物的群集着色与其他主题(例如公制理论和拓扑中的渐近维度),概率理论中的现场渗透以及信息理论中的香农能力之间的重要联系。

Recent results show that several important graph classes can be embedded as subgraphs of strong products of simpler graphs classes (paths, small cliques, or graphs of bounded treewidth). This paper develops general techniques to bound the chromatic number (and its popular variants, such as fractional, clustered, or defective chromatic number) of the strong product of general graphs with simpler graphs classes, such as paths, and more generally graphs of bounded treewidth. We also highlight important links between the study of (fractional) clustered colouring of strong products and other topics, such as asymptotic dimension in metric theory and topology, site percolation in probability theory, and the Shannon capacity in information theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源