论文标题
$ p(n,m)$的计算,$ n $的整数分区的数量恰好$ m $零件
Computation of $P(n,m)$, the Number of Integer Partitions of $n$ into Exactly $m$ Parts
论文作者
论文摘要
描述了两种用于计算$ p(n,m)$的算法,这些算法被描述为$ n $恰好$ m $零件的整数分区的数量,并结合了这两种算法的组合,结果算法为$ O(n^{3/2})$。第二个算法使用$ p(n)$的列表,即$ n $的整数分区的数量,该$ n $被缓存,因此只需计算一次。计算此列表也为$ O(n^{3/2})$。使用这些算法,$ q(n,m)$,$ n $的整数分区的数量恰好是$ m $不同的零件,以及$ q(n)$的列表,可以以$ o(n^{3/2})$计算的$ n $的整数分区数量。 $ p(n,1)的列表。p(n,n)$和$ p(m,m).. p(n,m)$可以以$ o(n^2)$计算。列出了实施这些算法的计算机代数程序,并提供了该程序的某些时间。
Two algorithms for computing $P(n,m)$, the number of integer partitions of $n$ into exactly $m$ parts, are described, and using a combination of these two algorithms, the resulting algorithm is $O(n^{3/2})$. The second algorithm uses a list of $P(n)$, the number of integer partitions of $n$, which is cached and therefore needs to be computed only once. Computing this list is also $O(n^{3/2})$. With these algorithms also $Q(n,m)$, the number of integer partitions of $n$ into exactly $m$ distinct parts, and a list of $Q(n)$, the number of integer partitions of $n$ into distinct parts, can be computed in $O(n^{3/2})$. A list of $P(n,1)..P(n,n)$ and $P(m,m)..P(n,m)$ can be computed in $O(n^2)$. A computer algebra program is listed implementing these algorithms, and some timings of this program are provided.