论文标题
临时域中的基质产物状态的非平衡量子杂质问题
Non-equilibrium quantum impurity problems via matrix-product states in the temporal domain
论文作者
论文摘要
描述与一个或多个非相互作用的费米子储层结合的量子杂质是量子多体物理学的一个范式问题。虽然历史上的重点一直放在杂质 - 保存系统的平衡特性上,但对中学和冷原子系统的最新实验促进了对高度非平衡杂质模型的研究,这些模型需要新颖的理论技术。我们提出了一种基于Feynman-Vernon影响功能(如果)的基质 - 产品状态(MPS)表示的方法来分析杂质动力学的方法。此类MP表示的效率取决于IF的时间纠缠(TE)熵的中等值,在时间域中被视为虚拟的“波函数”。我们为一维储层的家族获得了此波函数的明确表达式,并分析了不同储层初始状态的演化时间的TE缩放时间。对于具有短距离相关性的初始状态,我们发现了时间区域律缩放,而费米 - 型型初始状态会随时间产生对数缩放,与关键1D系统中的真实空间纠缠缩放密切相关。此外,我们描述了一种有效的算法,用于将储层的显式形式转换为MPS形式。一旦IF由国会议员编码,无论其内部结构如何,都可以有效地计算相互作用杂质的任意时间相关函数。此处介绍的方法可以应用于许多实验设置,包括通过量子点高度非平衡的传输以及杂质 - 保存相关性的实时形成。
Describing a quantum impurity coupled to one or more non-interacting fermionic reservoirs is a paradigmatic problem in quantum many-body physics. While historically the focus has been on the equilibrium properties of the impurity-reservoir system, recent experiments with mesoscopic and cold-atomic systems enabled studies of highly non-equilibrium impurity models, which require novel theoretical techniques. We propose an approach to analyze impurity dynamics based on the matrix-product state (MPS) representation of the Feynman-Vernon influence functional (IF). The efficiency of such a MPS representation rests on the moderate value of the temporal entanglement (TE) entropy of the IF, viewed as a fictitious "wave function" in the time domain. We obtain explicit expressions of this wave function for a family of one-dimensional reservoirs, and analyze the scaling of TE with the evolution time for different reservoir's initial states. While for initial states with short-range correlations we find temporal area-law scaling, Fermi-sea-type initial states yield logarithmic scaling with time, closely related to the real-space entanglement scaling in critical 1d systems. Furthermore, we describe an efficient algorithm for converting the explicit form of the reservoirs' IF to MPS form. Once the IF is encoded by a MPS, arbitrary temporal correlation functions of the interacting impurity can be efficiently computed, irrespective of its internal structure. The approach introduced here can be applied to a number of experimental setups, including highly non-equilibrium transport via quantum dots and real-time formation of impurity-reservoir correlations.