论文标题
使用代数图理论,在任意波形下量子自旋系统的时间进化的精确解决方案
Exact solutions for the time-evolution of quantum spin systems under arbitrary waveforms using algebraic graph theory
论文作者
论文摘要
提出了一种通用方法,该方法在任意时间功能的参数波形期间为量子自旋系统的时间进化提供了精确的分析解决方案。所提出的方法利用\ emph {path-sum}方法依赖于图形上步行的代数和组合特性。提出了对所提出的形式主义的完整数学处理,并伴随着\ textsc {matlab}中的实现。使用单核,两分和三方量子自旋系统的自旋动力学作为示例参数波形的计算,证明所提出的方法始终超过传统的数值方法,包括传统的积分器和分段 - 恒定传播器近似值。
A general approach is presented that offers exact analytical solutions for the time-evolution of quantum spin systems during parametric waveforms of arbitrary functions of time. The proposed method utilises the \emph{path-sum} method that relies on the algebraic and combinatorial properties of walks on graphs. A full mathematical treatment of the proposed formalism is presented, accompanied by an implementation in \textsc{Matlab}. Using computation of the spin dynamics of monopartite, bipartite, and tripartite quantum spin systems under chirped pulses as exemplar parametric waveforms, it is demonstrated that the proposed method consistently outperforms conventional numerical methods, including ODE integrators and piecewise-constant propagator approximations.