论文标题

化学稳定模型的准平台行为:Crump-Young模型

Quasi-stationary behavior for an hybrid model of chemostat: the Crump-Young model

论文作者

Cloez, Bertrand, Fritsch, Coralie

论文摘要

Crump-Young模型由两个完全耦合的随机过程组成,这些过程对化学稳定物中的底物和微生物动力学进行了建模。底物遵循一个普通的微分方程,其系数取决于微生物的数量。微生物是通过纯跳跃过程建模的,其跳跃速率取决于底物浓度。从微生物种群消失的意义上,它几乎灭绝了。在这项工作中,我们表明,在不膨胀的条件下,其分布将指数级的收敛于准平台分布。由于确定性部分,Crump-Young模型的动力学被高度退化。然后,证明是原始的,由技术尖锐的估计值和准平台收敛的新方法组成。

The Crump-Young model consists of two fully coupled stochastic processes modeling the substrate and microorganisms dynamics in a chemostat. Substrate evolves following an ordinary differential equation whose coefficients depend of microorganisms number. Microorganisms are modeled though a pure jump process whose the jump rates depend on the substrate concentration. It goes to extinction almost-surely in the sense that microorganism population vanishes. In this work, we show that, conditionally on the non-extinction, its distribution converges exponentially fast to a quasi-stationary distribution. Due to the deterministic part, the dynamics of the Crump-Young model is highly degenerated. The proof is then original and consists of technical sharp estimates and new approaches for the quasi-stationary convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源