论文标题

散装和边界驱动系统中的耗散性和哈密顿

Untangling Dissipative and Hamiltonian effects in bulk and boundary driven systems

论文作者

Renger, D. R. Michiel, Sharma, Upanshu

论文摘要

使用大偏差理论,宏观波动理论提供了一个框架,以了解扩散系统中非平衡动力学和稳态的行为。我们将此框架扩展到了非平衡非扩散系统的最小模型,特别是有限图上的开放线性网络。我们明确计算驱动系统朝稳态的耗散大量和边界力,以及将系统驱动在稳态周围的轨道上的非隔离体积和边界力。利用这些力在某种意义上是正交的事实,我们将大驱动成本分解为耗散和非散文术语。我们确定纯粹的非动力将动力学变成了哈密顿制度。这些理论发现由数值示例说明。

Using the theory of large deviations, macroscopic fluctuation theory provides a framework to understand the behaviour of non-equilibrium dynamics and steady states in diffusive systems. We extend this framework to a minimal model of non-equilibrium non-diffusive system, specifically an open linear network on a finite graph. We explicitly calculate the dissipative bulk and boundary forces that drive the system towards the steady state, and non-dissipative bulk and boundary forces that drives the system in orbits around the steady state. Using the fact that these forces are orthogonal in a certain sense, we provide a decomposition of the large-deviation cost into dissipative and non-dissipative terms. We establish that the purely non-dissipative force turns the dynamics into a Hamiltonian system. These theoretical findings are illustrated by numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源