论文标题

广义快速多通道非负矩阵分解基于高斯尺度混合物的盲源分离

Generalized Fast Multichannel Nonnegative Matrix Factorization Based on Gaussian Scale Mixtures for Blind Source Separation

论文作者

Fontaine, Mathieu, Sekiguchi, Kouhei, Nugraha, Aditya, Bando, Yoshiaki, Yoshii, Kazuyoshi

论文摘要

本文介绍了从统一的角度来看,最先进的多通道非单调矩阵分解(fastMNMF)的最先进的盲源分离方法的重尾扩展。得出这种扩展的常见方法是用其重尾概括(例如,多变量复杂的学生的T和leptokurtic概括的高斯分布)替换可能性函数中的多元复杂高斯分布,并量身定制相应的参数优化算法。使用称为高斯尺度混合物(GSM)的更广泛的重尾分布,即高斯分布的混合物,其差异被称为脉冲变量的积极随机标量扰动,我们提出GSM-fastMNMF并在表达式变量中不得不构成概率的变量,并且不得不开发预期的算法algorithm。我们表明,现有的重尾FastMNMF扩展是GSM-FASTMNMF的实例,并根据普遍的双曲线分布来得出新实例,其中包括正常的内部高斯,学生的T和高斯分布作为特殊情况。我们的实验表明,正常的高斯fastMNMF的表现优于最先进的fastMNMF扩展和ILRMA模型,而在信号距离之比方面,语音增强和分离中的ILRMA模型。

This paper describes heavy-tailed extensions of a state-of-the-art versatile blind source separation method called fast multichannel nonnegative matrix factorization (FastMNMF) from a unified point of view. The common way of deriving such an extension is to replace the multivariate complex Gaussian distribution in the likelihood function with its heavy-tailed generalization, e.g., the multivariate complex Student's t and leptokurtic generalized Gaussian distributions, and tailor-make the corresponding parameter optimization algorithm. Using a wider class of heavy-tailed distributions called a Gaussian scale mixture (GSM), i.e., a mixture of Gaussian distributions whose variances are perturbed by positive random scalars called impulse variables, we propose GSM-FastMNMF and develop an expectationmaximization algorithm that works even when the probability density function of the impulse variables have no analytical expressions. We show that existing heavy-tailed FastMNMF extensions are instances of GSM-FastMNMF and derive a new instance based on the generalized hyperbolic distribution that include the normal-inverse Gaussian, Student's t, and Gaussian distributions as the special cases. Our experiments show that the normalinverse Gaussian FastMNMF outperforms the state-of-the-art FastMNMF extensions and ILRMA model in speech enhancement and separation in terms of the signal-to-distortion ratio.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源