论文标题
离散时间依赖性波方程II。半经典klein-gordon方程
Discrete Time-Dependent Wave Equations II. Semiclassical Fractional Klein-Gordon Equation
论文作者
论文摘要
在本文中,我们考虑了晶格上的分数klein-gordon方程的半经典版本,$ h {\ sathbb {z}}}^n。$与[2]中考虑的欧几里得案例相反,该案例在[2]中所考虑的,离散的klein-gordon方程在$ \ ell^2($ \ ell^2(klein-gordon方程)中,还要在半经典参数$ h \ rightarrow 0的限制的某些sobolev空间中恢复适当的性能。$。
In this paper, we consider a semiclassical version of the fractional Klein-Gordon equation on the lattice, $h{\mathbb{Z}}^n.$ Contrary to the Euclidean case that was considered in [2], the discrete fractional Klein-Gordon equation is well-posed in $\ell^2(h{\mathbb{Z}}^n).$ However, we also recover the well-posedness results in the certain Sobolev spaces in the limit of the semiclassical parameter $h\rightarrow 0.$