论文标题
持续表示学习的对比度监督蒸馏
Contrastive Supervised Distillation for Continual Representation Learning
论文作者
论文摘要
在本文中,我们为持续表示学习问题提出了一种新颖的培训程序,其中依次学习了神经网络模型,以减轻视觉搜索任务中的灾难性遗忘。我们的方法称为对比度有监督的蒸馏(CSD),在学习判别特征的同时,还会减少忘记。这是通过在蒸馏设置中利用标签信息来实现的,在蒸馏设置中,从教师模型中对学生的模型进行了相反的学习。广泛的实验表明,CSD在减轻灾难性遗忘方面表现优于当前最新方法。我们的结果还提供了进一步的证据,表明在视觉检索任务中评估的功能忘记不像分类任务那样灾难性。代码:https://github.com/niccobiondi/contrastivesupervisedistillation。
In this paper, we propose a novel training procedure for the continual representation learning problem in which a neural network model is sequentially learned to alleviate catastrophic forgetting in visual search tasks. Our method, called Contrastive Supervised Distillation (CSD), reduces feature forgetting while learning discriminative features. This is achieved by leveraging labels information in a distillation setting in which the student model is contrastively learned from the teacher model. Extensive experiments show that CSD performs favorably in mitigating catastrophic forgetting by outperforming current state-of-the-art methods. Our results also provide further evidence that feature forgetting evaluated in visual retrieval tasks is not as catastrophic as in classification tasks. Code at: https://github.com/NiccoBiondi/ContrastiveSupervisedDistillation.