论文标题
核结构和核数据的量子计算计算
Quantum Computing Calculations for Nuclear Structure and Nuclear Data
论文作者
论文摘要
使用模拟和实际量子计算机上的量子计算算法来对核性质的模型计算。 这些模型是基于有效场理论的Deuteron结合的现实计算,也是简化的两级版本的核壳模型,称为Lipkin-Meshkov-Glick模型。 提出了一种减少实际计算所需的量子数量的方法,使用标准的Jordan-Wigner编码时所需的数量的减少。在Deuteron结合和壳模型的情况下,其功效显示出。 显示了频谱中所有特征状态的变异量子本质量的版本。该方法涉及找到哈密顿式差异的最小值。提供了该方法找到简化壳模型的完整范围的能力。
Model calculations of nuclear properties are peformed using quantum computing algorithms on simulated and real quantum computers. The models are a realistic calculation of deuteron binding based on effective field theory, and a simplified two-level version of the nuclear shell model known as the Lipkin-Meshkov-Glick model. A method of reducing the number of qubits needed for practical calculation is presented, the reduction being with respect to the number needed when the standard Jordan-Wigner encoding is used. Its efficacy is shown in the case of the deuteron binding and shell model. A version of the variational quantum eigensolver in which all eigenstates in a spectrum are targetted on an equal basis is shown. The method involves finding the minima of the variance of the Hamiltonian. The method's ability to find the full spectrum of the simplified shell model is presented.