论文标题
微观结构缺陷演变的非本地机器学习结晶材料
Nonlocal Machine Learning of Micro-Structural Defect Evolutions in Crystalline Materials
论文作者
论文摘要
制造过程中出现的缺陷的存在和演变在工程材料的故障机理中起着至关重要的作用。特别是,在中尺度上,位错动力学的集体行为导致雪崩,应变爆发,间歇性能量尖峰以及非局部相互作用,从而在不同的时间和长度尺度上产生异常特征,直接影响塑性,void和裂纹成核。离散位错动力学(DDD)模拟通常在中级级别使用,但是随着模拟时间,成本和复杂性急剧增加。为了进一步了解异常特征如何传播到连续体,我们开发了一种概率模型,用于从DDD模拟获得的位置统计构建的位错运动。我们通过脱位运动的概率密度函数获得离散位错动力学的连续极限,并提出了PDF的非局部传输模型。我们开发了一个机器学习框架,以使用幂律内核来学习非局部操作员的参数,将DDD的异常性与连续体的相应非局部运算符的起源联系起来,从而促进了错位动力学的整合到多尺度尺度,长时间的物质失败模拟中。
The presence and evolution of defects that appear in the manufacturing process play a vital role in the failure mechanisms of engineering materials. In particular, the collective behavior of dislocation dynamics at the mesoscale leads to avalanche, strain bursts, intermittent energy spikes, and nonlocal interactions producing anomalous features across different time- and length-scales, directly affecting plasticity, void and crack nucleation. Discrete Dislocation Dynamics (DDD) simulations are often used at the meso-level, but the cost and complexity increase dramatically with simulation time. To further understand how the anomalous features propagate to the continuum, we develop a probabilistic model for dislocation motion constructed from the position statistics obtained from DDD simulations. We obtain the continuous limit of discrete dislocation dynamics through a Probability Density Function for the dislocation motion, and propose a nonlocal transport model for the PDF. We develop a machine-learning framework to learn the parameters of the nonlocal operator with a power-law kernel, connecting the anomalous nature of DDD to the origin of its corresponding nonlocal operator at the continuum, facilitating the integration of dislocation dynamics into multi-scale, long-time material failure simulations.