论文标题

AI和理论粒子物理

AI and Theoretical Particle Physics

论文作者

Gupta, Rajan, Bhattacharya, Tanmoy, Yoon, Boram

论文摘要

理论粒子物理学家继续在高性能计算以及管理和分析大型数据集中推动包膜。例如,使用晶格QCD的大规模模拟以及在实验中,高亮度大型Hadron Collider(LHC)在硬件中需要新的工具,在实验产生的数据中,使用晶格QCD的大规模模拟以及发现罕见事件和新物理学的信号来预测量子染色体动力学(QCD)的次级准确性的目标。机器学习和人工智能提供了大幅减少计算成本和时间的希望。本章回顾了AI/ML工具可能会产生重大影响,概述挑战的选定领域,并讨论了诸如归一化流量之类的新想法如何加快晶格QCD计算中所需的规格配置的生成; ML在替代模型和模式匹配中的增长,以降低事件发生器的成本和实验数据的分析;并在弦理论的景观中寻找可行的真空。尽管这种方法将粒子理论的各个方面转化为计算问题,因此我们认为这些工具的物理感知的开发与算法相结合,以确保结果是偏见的,将继续需要对物理学有深入的了解。我们认为,这种更广泛的转换类似于从晶格QCD的模拟中制定和提取可观察到的物品,这是QCD的路径积分公式的数值整合,尽管如此,QCD的组合公式仍需要深入了解基础量子场理论,粒子物理学的标准模型和有效的现场理论方法。

Theoretical particle physicists continue to push the envelope in both high performance computing and in managing and analyzing large data sets. For example, the goals of sub-percent accuracy in predictions of quantum chromodynamics (QCD) using large scale simulations of lattice QCD and in finding signals of rare events and new physics in exabytes of data produced by experiments at the high luminosity large hadron collider (LHC) require new tools beyond just developments in hardware. Machine learning and artificial intelligence offer the promise of dramatically reducing the computational cost and time. This chapter reviews selected areas where AI/ML tools could have a major impact, provides an overview of the challenges, and discusses how new ideas such as normalizing flows can speed up the generation of gauge configurations needed in lattice QCD calculations; the growth of ML in surrogate models and pattern matching to reduce the cost of event generators and in the analysis of experimental data; and in the search for viable vacua in the landscape of string theories. While such approaches transform aspects of particle theory into computational problems, and thus black boxes, we argue that physics-aware development of these tools combined with algorithms that ensure that the results are bias free will continue to require a deep understanding of the physics. We see this broader transformation as akin to formulating and extracting observables from simulations of lattice QCD, a numerical integration of the path integral formulation of QCD that nevertheless requires a deep understanding of the underlying quantum field theory, the standard model of particle physics and effective field theory methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源