论文标题
2组的小组田地理论
Group field theory on 2-groups
论文作者
论文摘要
小组字段理论是构建组构建的量子场理论。它们可以看作是生成拓扑状态和量子重力模型的工具。对于四个维歧管,不同的参数指向2组(例如交叉模块)是相关的对称结构,以探测四个维拓扑特征。在这里,我们介绍了一个基于交叉模块建立的小组字段理论,该理论生成了四个维拓扑模型,因为我们证明了Feynman图幅度可以通过Pachner Move相关。该模型大概是Yetter-Mackaay模型的双重版本。
Group field theories are quantum field theories built on groups. They can be seen as a tool to generate topological state-sums or quantum gravity models. For four dimensional manifolds, different arguments have pointed towards 2-groups (such as crossed modules) as the relevant symmetry structure to probe four dimensional topological features. Here, we introduce a group field theory built on crossed modules which generate a four dimensional topological model, as we prove that the Feynman diagram amplitudes can be related by Pachner moves. This model is presumably the dual version of the Yetter-Mackaay model.