论文标题

盲目夜间图像质量评估的深度分解和双线性池网络

Deep Decomposition and Bilinear Pooling Network for Blind Night-Time Image Quality Evaluation

论文作者

Jiang, Qiuping, Xu, Jiawu, Mao, Yudong, Zhou, Wei, Min, Xiongkuo, Zhai, Guangtao

论文摘要

盲目图像质量评估(BIQA)旨在准确预测图像质量而无需任何原始参考信息,在过去的几十年中一直广泛关注。特别是,在深层神经网络的帮助下,已经取得了巨大进展。但是,对于夜间图像(NTIS)的BIQA,它的研究仍然较少,该图像通常患有复杂的真实扭曲,例如可见性降低,对比度低,添加噪声和颜色扭曲。这些多样化的真实降解特别挑战了有效的深神经网络的设计,用于盲目NTI质量评估(NTIQE)。在本文中,我们提出了一个新颖的深层分解和双线性池网络(DDB-NET),以更好地解决此问题。 DDB-NET包含三个模块,即图像分解模块,一个特征编码模块和双线性池模块。图像分解模块的灵感来自Itinex理论,并涉及将输入NTI解耦到负责照明信息的照明层组件和负责内容信息的反射层组件。然后,编码模块的功能涉及分别植根于两个解耦组件的降解的特征表示。最后,通过将照明相关和与内容相关的降解作为两因素变化进行建模,将两个特征集组合在一起,将双线汇总在一起,形成统一的表示质量预测。在多个基准数据集上进行了广泛的实验,已经对所提出的DDB-NET的优势进行了很好的验证。源代码将很快提供。

Blind image quality assessment (BIQA), which aims to accurately predict the image quality without any pristine reference information, has been extensively concerned in the past decades. Especially, with the help of deep neural networks, great progress has been achieved. However, it remains less investigated on BIQA for night-time images (NTIs) which usually suffers from complicated authentic distortions such as reduced visibility, low contrast, additive noises, and color distortions. These diverse authentic degradations particularly challenges the design of effective deep neural network for blind NTI quality evaluation (NTIQE). In this paper, we propose a novel deep decomposition and bilinear pooling network (DDB-Net) to better address this issue. The DDB-Net contains three modules, i.e., an image decomposition module, a feature encoding module, and a bilinear pooling module. The image decomposition module is inspired by the Retinex theory and involves decoupling the input NTI into an illumination layer component responsible for illumination information and a reflection layer component responsible for content information. Then, the feature encoding module involves learning feature representations of degradations that are rooted in the two decoupled components separately. Finally, by modeling illumination-related and content-related degradations as two-factor variations, the two feature sets are bilinearly pooled together to form a unified representation for quality prediction. The superiority of the proposed DDB-Net has been well validated by extensive experiments on several benchmark datasets. The source code will be made available soon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源