论文标题

要回答开放式的道德难题问题

Towards Answering Open-ended Ethical Quandary Questions

论文作者

Bang, Yejin, Lee, Nayeon, Yu, Tiezheng, Khalatbari, Leila, Xu, Yan, Cahyawijaya, Samuel, Su, Dan, Wilie, Bryan, Barraud, Romain, Barezi, Elham J., Madotto, Andrea, Kee, Hayden, Fung, Pascale

论文摘要

基于大型语言模型(LLM)令人印象深刻的功能,在各种NLP任务中取得了很大的进步,并且在我们的日常生活中部署了许多NLP应用程序。在这项工作中,我们将通过道德上难题的生成问题回答的新任务来挑战LLM的能力。道德上的难题问题更具挑战性,因为一个难题可能存在多个冲突的答案。我们探讨了LLM在提供苏格拉底哲学的方法上以不同观点进行审议的不同观点提供答案的当前能力,而不是提供像Oracle这样的封闭答案。我们提出了一个模型,该模型搜索适用于道德难题的不同道德原则,并通过迅速的基于基础的几次学习来根据所选原则产生答案。我们还讨论了该任务中涉及的剩余挑战和道德问题,并通过明确纳入人类价值观来开发负责任的NLP系统的方向。

Considerable advancements have been made in various NLP tasks based on the impressive power of large language models (LLMs) and many NLP applications are deployed in our daily lives. In this work, we challenge the capability of LLMs with the new task of Ethical Quandary Generative Question Answering. Ethical quandary questions are more challenging to address because multiple conflicting answers may exist to a single quandary. We explore the current capability of LLMs in providing an answer with a deliberative exchange of different perspectives to an ethical quandary, in the approach of Socratic philosophy, instead of providing a closed answer like an oracle. We propose a model that searches for different ethical principles applicable to the ethical quandary and generates an answer conditioned on the chosen principles through prompt-based few-shot learning. We also discuss the remaining challenges and ethical issues involved in this task and suggest the direction toward developing responsible NLP systems by incorporating human values explicitly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源