论文标题

网络中的异常检测和社区检测

Anomaly detection and community detection in networks

论文作者

Safdari, Hadiseh, De Bacco, Caterina

论文摘要

异常检测是数据分析领域的相关问题。在各个实体相互作用的网络系统中,当相互作用的模式偏离被认为是规则的模式时,就会观察到异常。正确地定义哪些常规模式需要依赖于开发表达性模型来描述观察到的相互作用。解决网络中的异常检测至关重要。在网络的许多知名模型中,潜在变量模型(一类概率模型)提供了有希望的工具来捕获数据的内在特征。在这项工作中,我们提出了一种概率生成方法,该方法将领域知识(即社区成员资格,作为常规行为的基本模型)结合起来,从而标记了偏离这种模式的潜在异常。实际上,社区会员资格是null模型的基础,以识别常规交互模式。结构信息通过用于社区成员和异常参数的潜在变量包含在模型中。该算法旨在推断这些潜在参数,然后输出标签网络边缘上的异常。

Anomaly detection is a relevant problem in the area of data analysis. In networked systems, where individual entities interact in pairs, anomalies are observed when pattern of interactions deviates from patterns considered regular. Properly defining what regular patterns entail relies on developing expressive models for describing the observed interactions. It is crucial to address anomaly detection in networks. Among the many well-known models for networks, latent variable models - a class of probabilistic models - offer promising tools to capture the intrinsic features of the data. In this work, we propose a probabilistic generative approach that incorporates domain knowledge, i.e., community membership, as a fundamental model for regular behavior, and thus flags potential anomalies deviating from this pattern. In fact, community membership serves as the building block of a null model to identify the regular interaction patterns. The structural information is included in the model through latent variables for community membership and anomaly parameter. The algorithm aims at inferring these latent parameters and then output the labels identifying anomalies on the network edges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源